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Abstract 

In the winter Olympic sport of Skeleton, sliders sprint and load themselves onto the sled facing head forwards.  The slider uses primarily their 
shoulders and torso to apply control to the direction of the sled as it progressively gains speed during its descent. These small control course 
keeping maneuvers alongside more severe use of toe tapping onto the ice will help determine the eventual trajectory of the sled. It is therefore 
of interest to consider for a possible trajectory what control actions will determine the fastest descent time and in particular what metrics should 
be examined. In this paper a three degree-of-freedom simulation has been developed to analyse the influence of different control strategies on 
the descent time of a bob-skeleton. A proportional-derivative (PD) controller is used to steer the simulation down a representation of the Igls 
ice-track. Parametric variations of the simulation's performance were analysed and compared to identify possible correlations for controllers 
assist the design of an optimal controller. Analysis of the results have identified positive correlations between descent time, transverse distance 
travelled and energy dissipation establishing that the fastest descent time is achieved by minimising the energy lost through the descent. 
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Nomenclature 

αc longitudinal position of the particle representing the sled 
βc transverse position of the particle representing the sled 
Fact total active forces on the particle representing the sled 
rα, rαα spatial derivative in the longitudinal direction 
rβ, rββ spatial derivative in the transverse direction 
rαβ spatial derivative in both longitudinal and transverse direction 
m mass of particle representing athlete and sled 
g acceleration due to gravity 
h0, hf initial and final height of the particle representing the sled 
v0, vf initial and final speed of the particle representing the sled 
u(t) control input 
e(t) error between reference position and actual position 
Kp proportional gain 
Kd derivative gain 

© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the organizing committee of ISEA 2016

http://crossmark.crossref.org/dialog/?doi=10.1016/j.proeng.2016.06.253&domain=pdf


713 Chen Gong et al.  /  Procedia Engineering   147  ( 2016 )  712 – 717 

1. Introduction 

The sport of skeleton involves the headfirst descent of an ice track performed by athletes on a sled. The goal is to achieve the 
fastest descent time. During a race, the sled can reach a maximum speed of around 130km/h; with the G-force reaching 5G 
through high banking corners and constant high levels of vibration due to uneven ice surfaces [1]. It would be of significant 
benefit to both coaches and athletes if an a priori ‘optimum’ trajectory could be predicted for the descent of a given track. 

Through simulation, [4, 5] have shown that it is possible to find the ‘optimum’ descent trajectory for the Bobsleigh using 
optimal control algorithms. Due to the similarities between the underlying dynamics of the two sports, it is reasonable to believe 
a comparable approach could be used to find the ‘optimum’ descent trajectory for skeleton. An important element in designing 
any optimal control algorithm is the selection of the cost function to be minimised. In [5] it is stated that different costing 
strategies (i.e. minimum length path vs minimum energy dissipated path) have produced consistent difference in results, 
deducing that the final decent time will reduce if the energy dissipated is minimised. Though the results are promising, it cannot 
be trivially generalised to skeleton, since there exists discrepancies within the fundamental dynamics of the sports. 

The objective of the work reported here is to identify the optimal cost function strategy for the skeleton descents by analysing 
the performance in simulation of a three degree-of-freedom skeleton dynamics model. Results from the simulation are used to 
identify feasible cost function for onward analysis. 

2. Methodology 

 

Figure 1 The principles of steering a skeleton [1]. This figure represents a right turn. The athlete applies pressure with left shoulder and right knee. This creates a 
frictional imbalance between left and right runners resulting in a turning moment. 

The one degree-of-freedom skeleton dynamic model built by [2] has been extended to two degrees-of-freedom following 
similar underlying equations of motion and surfacing mapping techniques as [3]. The model is steered by the empirical based 
steering model from [1], which produces yaw moments, in the same manner by which the athlete achieves a steer on the sled as 
shown in Figure 1. The new model is therefore extended to three degrees-of-freedom to include the influence of sled yaw relative 
to its track. Equation (1) relates to the transverse sled motion in the model to the actuation Fact generated from the empirical 
steering model.   

 

 

 

(1) 

The track surface, following the convention of [3,6] and illustrated in Figure 2 uses a parametric representation of the actual 
modelled three dimensional surface where the position , is given as a function of a distance parameter α and transverse 
parameter β. In (1) the first and second derivatives of position r in directions α, β are written using the appropriate subscript.  The 
forces acting on the sled, Fact (i.e. aerodynamic drag and lift are calculated using similar fundamental physical equations as [3,6], 
runner ice friction is forces as computed in [2]) and those due to steering control or wall collision will act to counter the gain in 
kinetic energy as the potential energy of the mass of the slider and sled is converted into kinetic energy.  The air drag assumes a 
constant value of drag coefficient based on typical projected area of sled and slider. Likewise a semi-empirical value for ice 
friction coefficient is used. 
 

 

 

(2) 

The track geometry, Figure 2(a), used for this simulation is a representation of the Olympic Bob track in Innsbruck, Igls, 
Austria. The model was built as reconstructions of track topography and a combination of straights and corners with estimated 
cross-section. Igls was selected as it contains a board range of corner geometries, making it suitable for testing the robustness of 
the dynamic model and to ensure that results obtained on this track has a fair degree of generality. 
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The track model was constructed by estimating the track cross-sections from physical measurements and digital images at key 
locations along the track. The track’s centerline, Fig. 2(a) was estimated using imagery from Google Earth. 14 points were 
equally distributed along each cross-section (Fig. 2(b)). A cubic spline was then fitted through the respective points in each 
cross-section, generating 14 new splines along the length of the track. New cross-sections were interpolated using the 14 splines 
at 1.5m intervals along the track. This created a 3x14x890 matrix of points that could be used by the simulation as an 
approximation of the Igls track.  

The simulation was built in the real-time Matlab-Simulink environment. A PD controller was used to steer the simulation and 
is designed with the objective of following a descent trajectory (βref) pre-defined by subject matter experts to be the best line of 
descent. The PD controller treats the dynamic model as a ‘black box’ and asserted control inputs  in the form of nominal 
left and right steering forces. Said steering forces were determined by the error  between current sled centre position βc and 
the desired reference position βref. The magnitude and rate of these steering forces were further controlled by tuning the controller 
gains (i.e. proportional gain Kp and derivative gain Kd), equation (3) illustrates the basic principles of the PD controller. A 2nd 
order Butterworth low pass filter was implemented at the output of the PD controller to represent the steering input responses of 
a human athlete. The controller gains were tuned over a region (Kp ϵ [0.015, 0.05], Kd ϵ [0.04, 0.07]) where the dynamic model 
were able to complete the entire simulated descent, this region of controller gains was named the ‘stable region’ and the 
corresponding steering forces were recorded. It was shown that the steering forces were directly proportional to the magnitude of 
the controller gains. 

 

 
(3) 

 
The intention of the simulation is that the relative proportional magnitude of ice friction and air drag forces should be tuned so 

that the simulated descent time agrees to a reasonable level with a typical human descent in Igls. This gives confidence to the 
subsequent analysis examining the course keeping actions performed by the PD controller and the impact of tuning the controller 
gains. Said simulations were performed over the ‘stable region’, the performance indices (i.e. descent time, distance travelled & 
energy dissipation) were recorded and their correlation were used to design the cost strategies for the optimal controller.  

 
 

 

 

 
Figure 2 (a) Overview of the Igls Bob track. (b) Schematic of track cross-section coordinates adapted from [6]. 

 

3. xSimulation Results 

3.1 Descent Time 

Descent time is the most self-evident performance index to investigate as it ties in directly to the outcome of the race. 
Although the descent time is ad hoc to the dynamic model and track geometry, it can however adequately provide an 
understanding of general system behaviour and be utilised as a performance reference to gauge against other possible indices.  

Fig. 3 (a) indicates that the descent time exhibits a quadratic structure initially decreasing proportionally with the value of Kd 
and Kp. However, once Kd is sufficiently small, the descent time increases as Kp approaches its stable boundaries. This is not 
truly representative of the index behaviour for the following reason: 

When Kd is small, a large Kp will induce aggressive control actions and lead to instability in the system therefore leading to 
undesired oscillations, which causes a slower descent time. This is a defect caused by design of the controller and will skew the 
simulation data. In Fig. 3 (b), the x and y axes represent Kd and Kp respectively, the colour of the contour represent descent time. 
To avoid using data resulted from the aforementioned defect, a ‘Representative Region’ was put in place, indicated by the dashed 
box. The region cuts off at Kp = 0.04, which is the minimum value of Kd therefore within the region, the PD controller remains D 
dominant and should provide useful data. In Fig. 3 (b), the x and y axes represent Kd and Kp respectively, the colour of the 
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contour represent the general trend of descent time with respect to steering forces: Increments in steering force leads to 
increments in descent time. To keep the analysis relevant, only data from the representative region will be used for the other two 
performance indices.  

 

 

Fig. 3. (a) Surface plot of descent time vs steering force; (b) Contour plot of descent time vs steering force. 

3.2 Transverse Distance Travelled  

In the parametric surface representation each longitudinal spline, although varying slightly and not actually representing a 
viable trajectory would represent a minimal distance.  The cross track error e.g. the distance away from the prescribed trajectory 
is referred to in this work as the transverse distance travelled and its total is calculated by integrating |β| over the duration of the 
simulated descent. α was not included in the calculation since all simulated descent start and end are at the same α values.  

 

 

Fig. 4. (a) Surface plot of travel distance vs steering force; (b) Contour plot of travel distance vs steering force. 

Fig. 4 (a) presents the simulation data in different axes orientation to provide a better view for the overall system behaviour. It 
is clear that distance travelled is also skewed by the controller defect. In Fig. 4 (b), the x and y axes represent Kd and Kp 
respectively, the colour of the contour represent the trend of distance travelled with respect to steering force; increments in 
steering force leads to decrements in travel distance.  
 
3.3 Energy Dissipation 
 

In this model, energy is lost through friction and drag. The dissipation is calculated by subtracting kinetic energy gained from 

the potential energy lost through the simulation. Kinetic energy gained is calculated via  where v0 is the initial 

velocity after the sprint phase and  is the terminal velocity, (usually at the track finish). 

Representative Region 
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(4) 

 

 

Fig. 5. (a) Surface plot of energy dissipation vs steering force; (b) Contour plot of energy dissipation vs steering force. 

Fig. 5 shows that energy dissipation is affected by the controller defect to a much lesser degree. The reason for this is that 
energy lost is only proportional to friction caused by steering force (i.e. a simulated descent could take longer to complete but 
still have low energy lost). In Fig. 5, the x and y axes represent Kd and Kp respectively, the colour of the contour represents the 
trend of energy lost with respect to steering force; increments in steering force leads to increments in energy lost.  

3.4 Correlation Analysis 

To obtain suitable correlations for use in the optimal control designs, the values of each performance index were averaged across 
all the Kp values within the representative region. Fig. 6 presents the processed data compared against change in Kd, which can 
be perceived as steering forces at this point. 

Characteristics identifications were carried out and the following correlations can be drawn from analysing the figures: 
 Descent time exhibits a quadratically increasing characteristic with respect to the steering force. 
 Transverse distance travelled exhibits a quadratically decreasing characteristic with respect to the steering force.  
 Energy dissipation exhibits a quadratically increasing characterstic with respect to the steering force. 

A clear correlation between performance indices can be drawn from above characteristics: Increments in energy dissipation → 
decrements in transverse distance travelled → Increments in descent time. 
 

Although the simulation results demonstrated a clear correlation between the three performance indices, it however indicates 
that: ‘By maximising the transverse distance travelled, the athlete can minimise their descent time’. Without the context of 
energy dissipation, this correlation seems absurd. Analysing the above statement from another angle produces a more intuitive 
statement: ‘Instead of maximising the transverse distance travelled, athlete should not aim to reduce their travel distance in order 
minimise the energy lost.’ Therefore the distance travelled must be used in conjunction with energy lost for defining the cost 
minimisation strategy.   

4. Conclusion 

By analysing the correlation between performance indices, a feasible cost minimisation strategy could be determined. The 
relationship between energy dissipation and descent time is clear and makes logical sense. However, the effect of transverse 
distance travelled on the descent time is more complicated and further researche with different steering strategies are required to 
clarify this. Currently, to achieve the best descent time, the optimal controller should aim to minimise the energy lost through the 
race by limiting its steering actions.   This is consistent with the strategy of the best sliders who aim to steer an optimum track 
with a minimum of course keeping interventions. 

  



717 Chen Gong et al.  /  Procedia Engineering   147  ( 2016 )  712 – 717 

 

Fig. 6. Correlation graph between performance indices.  
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