1,718 research outputs found
Search for the Lepton Flavour Violating Higgs decay H --> tau mu at Hadron Colliders
We study the prospects to detect at hadron colliders the Lepton Flavour
Violating Higgs decay H --> tau mu, which can reach substantial branching
fractions in several extensions of the SM. Among them, the generic two higgs
doublet model can be taken as a representative case where B.R.(H --> tau mu)
can reach values of order 10^-1-10^-2. Bounds on the LFV factor kappa_{tau mu}
of order 0.8-1.7 can be derived at 95% c.l. at Tevatron Run-2 with 4 fb^-1 for
m_H = 110-150 GeV.Comment: 3 pages, 1 figure, uses RevTeX4. Contribution to Snowmass 200
The CUORE cryostat: an infrastructure for rare event searches at millikelvin temperatures
The CUORE experiment is the world's largest bolometric experiment. The
detector consists of an array of 988 TeO2 crystals, for a total mass of 742 kg.
CUORE is presently taking data at the Laboratori Nazionali del Gran Sasso,
Italy, searching for the neutrinoless double beta decay of 130Te. A large
custom cryogen-free cryostat allows reaching and maintaining a base temperature
of about 10 mK, required for the optimal operation of the detector. This
apparatus has been designed in order to achieve a low noise environment, with
minimal contribution to the radioactive background for the experiment. In this
paper, we present an overview of the CUORE cryostat, together with a
description of all its sub-systems, focusing on the solutions identified to
satisfy the stringent requirements. We briefly illustrate the various phases of
the cryostat commissioning and highlight the relevant steps and milestones
achieved each time. Finally, we describe the successful cooldown of CUORE
Limits on Dark Matter Effective Field Theory Parameters with CRESST-II
CRESST is a direct dark matter search experiment, aiming for an observation
of nuclear recoils induced by the interaction of dark matter particles with
cryogenic scintillating calcium tungstate crystals. Instead of confining
ourselves to standard spin-independent and spin-dependent searches, we
re-analyze data from CRESST-II using a more general effective field theory
(EFT) framework. On many of the EFT coupling constants, improved exclusion
limits in the low-mass region (< 3-4 GeV) are presented.Comment: 7 pages, 9 figure
First results from the CRESST-III low-mass dark matter program
The CRESST experiment is a direct dark matter search which aims to measure
interactions of potential dark matter particles in an earth-bound detector.
With the current stage, CRESST-III, we focus on a low energy threshold for
increased sensitivity towards light dark matter particles. In this manuscript
we describe the analysis of one detector operated in the first run of
CRESST-III (05/2016-02/2018) achieving a nuclear recoil threshold of 30.1eV.
This result was obtained with a 23.6g CaWO crystal operated as a cryogenic
scintillating calorimeter in the CRESST setup at the Laboratori Nazionali del
Gran Sasso (LNGS). Both the primary phonon/heat signal and the simultaneously
emitted scintillation light, which is absorbed in a separate
silicon-on-sapphire light absorber, are measured with highly sensitive
transition edge sensors operated at ~15mK. The unique combination of these
sensors with the light element oxygen present in our target yields sensitivity
to dark matter particle masses as low as 160MeV/c.Comment: 9 pages, 9 figure
Results on MeV-scale dark matter from a gram-scale cryogenic calorimeter operated above ground
Models for light dark matter particles with masses below 1 GeV/c are a
natural and well-motivated alternative to so-far unobserved weakly interacting
massive particles. Gram-scale cryogenic calorimeters provide the required
detector performance to detect these particles and extend the direct dark
matter search program of CRESST. A prototype 0.5 g sapphire detector developed
for the -cleus experiment has achieved an energy threshold of
eV, which is one order of magnitude lower than previous
results and independent of the type of particle interaction. The result
presented here is obtained in a setup above ground without significant
shielding against ambient and cosmogenic radiation. Although operated in a
high-background environment, the detector probes a new range of light-mass dark
matter particles previously not accessible by direct searches. We report the
first limit on the spin-independent dark matter particle-nucleon cross section
for masses between 140 MeV/c and 500 MeV/c.Comment: 6 pages, 6 figures, v3: ancillary files added, v4: high energy
spectrum (0.6-12keV) added to ancillary file
ACORDE a Cosmic Ray Detector for ALICE
ACORDE is one of the ALICE detectors, presently under construction at CERN.
It consists of an array of plastic scintillator counters placed on the three
upper faces of the ALICE magnet. It will act as a cosmic ray trigger, and,
together with other ALICE sub-detectors, will provide precise information on
cosmic rays with primary energies around eV. Here we
describe the design review of ACORDE along with the present status and
integration into ALICE.Comment: 2 pages, 2 figures. Conference Proceeding of the X Pisa Meeting on
Advanced Detectors, to be published in a special issue of Nuclear Instruments
and Method
- …