108 research outputs found
Effect of Pregnancy and the Postpartum Period on Adherence to Antiretroviral Therapy Among HIV-Infected Women Established on Treatment
Among women who become pregnant after initiating highly active antiretroviral therapy (HAART), few data describe the effect of pregnancy and postpartum on adherence. We conducted a retrospective clinical cohort study among therapy-naive women (ages 18–45) initiating HAART in Johannesburg, South Africa. Among 7,510 women in our analysis, 896 experienced a pregnancy after starting HAART. Compared to non-pregnant periods of follow-up, there was an increased risk of non-adherence during the postpartum period (weighted risk ratio (RR): 1.46, 95% confidence interval (CI): 1.17, 1.82), but not during pregnancy itself (weighted RR: 0.95, 95% CI: 0.78, 1.17)
Comparison of Pharmacy-Based Measures of Adherence to Antiretroviral Therapy as Predictors of Virological Failure
We compared multiple pharmacy refill-based adherence indicators for antiretroviral therapy, as well as thresholds for defining non-adherent behavior, based on ability to predict virological failure. A total of 29,937 pharmacy visits with corresponding viral load assessments were contributed by 8,695 patients attending a large clinic in Johannesburg, South Africa. Indicators based on pill coverage and timing of refill pickup performed comparably using the strictest thresholds for adherence [100 % pill coverage: odds ratio (OR) (95 % confidence interval (CI)) : 1.26 (1.15, 1.39); prescription picked up on or before scheduled refill date: 1.27 (1.16,1.38)]. For both types of indicators, the association between non-adherence and virological failure increased as the threshold defining adherent behavior was lowered. All measures demonstrated high specificity (range 84–98 %), but low sensitivity (5–19 %). In this setting, patients identified as non-adherent using pharmacy-based indicators are likely correctly classified and in need of interventions to improve compliance. Pharmacy based measures alone, however, are inadequate for identifying most cases of nonadherence
Treatment outcomes of new tuberculosis patients hospitalized in Kampala, Uganda: a prospective cohort study.
BACKGROUND: In most resource limited settings, new tuberculosis (TB) patients are usually treated as outpatients. We sought to investigate the reasons for hospitalisation and the predictors of poor treatment outcomes and mortality in a cohort of hospitalized new TB patients in Kampala, Uganda. METHODS AND FINDINGS: Ninety-six new TB patients hospitalised between 2003 and 2006 were enrolled and followed for two years. Thirty two were HIV-uninfected and 64 were HIV-infected. Among the HIV-uninfected, the commonest reasons for hospitalization were low Karnofsky score (47%) and need for diagnostic evaluation (25%). HIV-infected patients were commonly hospitalized due to low Karnofsky score (72%), concurrent illness (16%) and diagnostic evaluation (14%). Eleven HIV uninfected patients died (mortality rate 19.7 per 100 person-years) while 41 deaths occurred among the HIV-infected patients (mortality rate 46.9 per 100 person years). In all patients an unsuccessful treatment outcome (treatment failure, death during the treatment period or an unknown outcome) was associated with duration of TB symptoms, with the odds of an unsuccessful outcome decreasing with increasing duration. Among HIV-infected patients, an unsuccessful treatment outcome was also associated with male sex (P = 0.004) and age (P = 0.034). Low Karnofsky score (aHR = 8.93, 95% CI 1.88 - 42.40, P = 0.001) was the only factor significantly associated with mortality among the HIV-uninfected. Mortality among the HIV-infected was associated with the composite variable of CD4 and ART use, with patients with baseline CD4 below 200 cells/µL who were not on ART at a greater risk of death than those who were on ART, and low Karnofsky score (aHR = 2.02, 95% CI 1.02 - 4.01, P = 0.045). CONCLUSION: Poor health status is a common cause of hospitalisation for new TB patients. Mortality in this study was very high and associated with advanced HIV Disease and no use of ART
Adipose tissue pathways involved in weight loss of cancer cachexia
White adipose tissue (WAT) constitutes our most expandable tissue and largest
endocrine organ secreting hundreds of polypeptides collectively termed adipokines.
Changes in WAT mass induce alterations in adipocyte secretion and function, which
are linked to disturbed whole-body metabolism. Although the mechanisms controlling
this are not clear they are dependent on changes in gene expression, a complex process
which is regulated at several levels. Results in recent years have highlighted the role of
small non-coding RNA molecules termed microRNAs (miRNAs), which regulate gene
expression via post-transcriptional mechanisms. The aim of this thesis was to
characterize global gene expression levels and describe novel miRNAs and adipokines
controlling the function of human WAT in conditions with pathological increases or
decreases in WAT mass. Obesity and cancer cachexia were selected as two models
since they are both clinically relevant and characterized by involuntary changes in
WAT mass.
In Study I, expressional analyses were performed in subcutaneous WAT from cancer
patients with or without cachexia and obese versus non-obese subjects. In total, 425
transcripts were found to be regulated in cancer cachexia. Pathway analyses based on
this set of genes revealed that processes involving extracellular matrix, actin
cytoskeleton and focal adhesion were significantly downregulated, whereas fatty acid
metabolism was upregulated comparing cachectic with weight-stable cancer subjects.
Furthermore, by overlapping these results with microarray data from an obesity study,
many transcripts were found to be reciprocally regulated comparing the two conditions.
This suggests that WAT gene expression in cancer cachexia and obesity are regulated
by similar, albeit opposing, mechanisms.
In Study II, the focus was on the family of
fibroblast growth factors (FGFs), members of which have recently been implicated in
the development of obesity and insulin resistance. A retrospective analysis of global
gene expression data identified several FGFs (FGF1/2/7/9/13/18) to be expressed in
WAT. However, only one, FGF1, was actively secreted from WAT and predominantly
so from the adipocyte fraction. Moreover, FGF1 release was increased in obese
compared to non-obese subjects, but was not normalized by weight loss. Although the
clinical significance of these findings is not yet clear, it can be hypothesized that FGF1
may play a role in WAT growth, possibly by promoting fat cell proliferation and/or
differentiation.
In Study III, we identified adipose miRNAs regulated in obesity. Out
of eleven miRNAs regulated by changes in body fat mass, ten controlled the production
of the pro-inflammatory chemoattractant chemokine (C-C motif) ligand 2 (CCL2)
when overexpressed in fat cells and for two, miR-126 and -193b, signaling circuits
were defined.
In Study IV, a novel adipokine, semaphorin 3C (SEMA3C), was
identified by combining transcriptome and secretome data. Detailed studies focusing on
SEMA3C revealed that this factor was secreted from adipocytes and induced the
expression of extracellular matrix and matricellular genes in preadipocytes.
Furthermore, SEMA3C mRNA levels correlated with interstitial fibrosis and insulin
resistance in WAT derived from subjects with a wide range in BMI.
In summary, the results presented in this thesis have delineated transcriptional
alterations in WAT in two clinically relevant conditions, obesity and cancer cachexia.
This has allowed the identification of novel adipokines and microRNAs with potential
pathophysiological importance. These findings form the basis for further studies aiming
at understanding the central role of WAT in disorders associated with metabolic
complications
Novel Pathway of Adipogenesis through Cross-Talk between Adipose Tissue Macrophages, Adipose Stem Cells and Adipocytes: Evidence of Cell Plasticity
INTRODUCTION: Previous studies highlight a complex relationship between lineage and phenotype for adipose tissue macrophages (ATMs), adipose stem cells (ASCs), and adipocytes, suggesting a high degree of plasticity of these cells. In the present study, using a novel co-culture system, we further characterized the interaction between ATMs, ASCs and adipocytes. RESEARCH DESIGN AND METHODS: Human adipocytes and the stromal vascular fraction containing ATMs and ASCs were isolated from human adipose tissue and co-cultured for 24 hours. FACS was used to characterize ATMs and ASCs before and after co-culture. Preadipocytes generated after co-culture were characterized by immunostaining for DLK (preadipocytes), CD14 and CD68 (ATMs), CD34 (ASCs), and Nile Red staining for lipid drops. qRT-PCR was used to quantify adipogenic markers such as C/EBPα and PPARγ. A novel fluorescent nanobead lineage tracing method was utilized before co-culture where fluorescent nanobeads were internalized by CD68 (+) ATMs. RESULTS: Co-culture of adipocytes with ATMs and ASCs increased the formation of new preadipocytes, thereby increasing lipid accumulation and C/EBPα and PPARγ gene expression. Preadipocytes originating after co-culture were positive for markers of preadipocytes, ATMs and ASCs. Moreover, fluorescent nanobeads were internalized by ATMs before co-culture and the new preadipocytes formed after co-culture also contained fluorescent nanobeads, suggesting that new preadipocytes originated in part from ATMs. The formation of CD34(+)/CD68(+)/DLK (+) cell spheres supported the interaction of ATMs, ASCs and preadipocytes. CONCLUSIONS: Cross-talk between adipocytes, ATMs and ASCs promotes preadipocyte formation. The regulation of this novel adipogenic pathway involves differentiation of ATMs to preadipocytes. The presence of CD34(+)/CD68(+)/DLK(+) cells grouped in spheres suggest that paracrine interactions between these cell types plays an important role in the generation and proliferation of new preadipocytes. This phenomenon may reflect the in vivo plasticity of adipose tissue in which ATMs play an additional role during inflammation and other disease states. Understanding this novel pathway could influence adipogenesis, leading to new treatments for obesity, inflammation, and type 2 diabetes
Co-expressed immune and metabolic genes in visceral and subcutaneous adipose tissue from severely obese individuals are associated with plasma HDL and glucose levels: a microarray study
<p>Abstract</p> <p>Background</p> <p>Excessive accumulation of body fat, in particular in the visceral fat depot, is a major risk factor to develop a variety of diseases such as type 2 diabetes. The mechanisms underlying the increased risk of obese individuals to develop co-morbid diseases are largely unclear.</p> <p>We aimed to identify genes expressed in subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) that are related to blood parameters involved in obesity co-morbidity, such as plasma lipid and glucose levels, and to compare gene expression between the fat depots.</p> <p>Methods</p> <p>Whole-transcriptome SAT and VAT gene expression levels were determined in 75 individuals with a BMI >35 kg/m<sup>2</sup>. Modules of co-expressed genes likely to be functionally related were identified and correlated with BMI, plasma levels of glucose, insulin, HbA<sub>1c</sub>, triglycerides, non-esterified fatty acids, ALAT, ASAT, C-reactive protein, and LDL- and HDL cholesterol.</p> <p>Results</p> <p>Of the approximately 70 modules identified in SAT and VAT, three SAT modules were inversely associated with plasma HDL-cholesterol levels, and a fourth module was inversely associated with both plasma glucose and plasma triglyceride levels (p < 5.33 × 10<sup>-5</sup>). These modules were markedly enriched in immune and metabolic genes. In VAT, one module was associated with both BMI and insulin, and another with plasma glucose (p < 4.64 × 10<sup>-5</sup>). This module was also enriched in inflammatory genes and showed a marked overlap in gene content with the SAT modules related to HDL. Several genes differentially expressed in SAT and VAT were identified.</p> <p>Conclusions</p> <p>In obese subjects, groups of co-expressed genes were identified that correlated with lipid and glucose metabolism parameters; they were enriched with immune genes. A number of genes were identified of which the expression in SAT correlated with plasma HDL cholesterol, while their expression in VAT correlated with plasma glucose. This underlines both the singular importance of these genes for lipid and glucose metabolism and the specific roles of these two fat depots in this respect.</p
Effects of Exendin-4 on human adipose tissue inflammation and ECM remodelling
Subjects with type-2 diabetes are typically obese with dysfunctional adipose tissue (AT). Glucagon-like peptide-1 (GLP-1) analogues are routinely used to improve glycaemia. Although, they also aid weight loss that improves AT function, their direct effect on AT function is unclear. To explore GLP-1 analogues’ influence on human AT’s cytokine and extracellular matrix (ECM) regulation, we therefore obtained and treated omental (OMAT) and subcutaneous (SCAT) AT samples with Exendin-4, an agonist of the GLP-1 receptor (GLP-1R)Final publishe
- …