14,181 research outputs found
Studies of single top production at the Tevatron
I present the newest measurements of the production cross sections of single top quarks in pp collisions at âs = 1.96TeV in a data sample corresponding to an integrated luminosity of 5.4 fbâ1 collected by the D0 detector at the Fermilab Tevatron Collider. The data is also used to extract limits on the CKM Matrix element |Vtb|
Anterosuperior Glenoid Impingement Syndrome
Anterosuperior glenoid impingement is a well documented cause of shoulder pain. It occurs when there is deep tearing of the subscapularis, with fibers becoming embedded between the anterosuperior glenoid and humeral head. To our knowledge, this has not been described in radiologic literature and we present MRI findings depicting this entit
Star Formation Across the Taffy Bridge: UGC 12914/15
We present BIMA two-field mosaic CO(1-0) images of the Taffy galaxies (UGC
12914/15), which show the distinct taffy-like radio continuum emission bridging
the two spiral disks. Large amounts of molecular gas (1.4 x 10^{10} Msun, using
the standard Galactic CO-to-H conversion applicable to Galactic disk giant
molecular clouds [GMCs]) were clearly detected throughout the taffy bridge
between the two galaxies, which, as in the more extreme case of HI, presumably
results from a head-on collision between the two galaxies. The highest CO
concentration between the two galaxies corresponds to the H_alpha source in the
taffy bridge near the intruder galaxy UGC 12915. This HII region is also
associated with the strongest source of radio continuum in the bridge, and
shows both morphological and kinematic connections to UGC 12915. The overall CO
distribution of the entire system agrees well with that of the radio continuum
emission, particularly in the taffy bridge. This argues for the star formation
origin of a significant portion of the radio continuum emission. Compared to
the HI morphology and kinematics, which are strongly distorted owing to the
high-speed collision, CO better defines the orbital geometry and impact
parameter of the interaction, as well as the disk properties (e.g., rotation,
orientation) of the progenitor galaxies. Based on the 20cm-to-CO ratio maps, we
conclude that the starburst sites are primarily located in UGC 12915 and the
H_alpha source in the bridge and show that the molecular gas in the taffy
bridge is forming into stars with star formation efficiency comparable to that
of the target galaxy UGC 12914 and similar to that in the Galactic disk.Comment: Minor typo/style corrections to match with the published version (AJ,
Nov. issue). A single .ps.gz file of the entire paper can be downloaded from
http://spider.ipac.caltech.edu/staff/gao/Taffy/all.ps.g
Ab initio calculation of the anomalous Hall conductivity by Wannier interpolation
The intrinsic anomalous Hall effect in ferromagnets depends on subtle
spin-orbit-induced effects in the electronic structure, and recent ab-initio
studies found that it was necessary to sample the Brillouin zone at millions of
k-points to converge the calculation. We present an efficient first-principles
approach for computing the anomalous Hall conductivity. We start out by
performing a conventional electronic-structure calculation including spin-orbit
coupling on a uniform and relatively coarse k-point mesh. From the resulting
Bloch states, maximally-localized Wannier functions are constructed which
reproduce the ab-initio states up to the Fermi level. The Hamiltonian and
position-operator matrix elements, needed to represent the energy bands and
Berry curvatures, are then set up between the Wannier orbitals. This completes
the first stage of the calculation, whereby the low-energy ab-initio problem is
transformed into an effective tight-binding form. The second stage only
involves Fourier transforms and unitary transformations of the small matrices
set up in the first stage. With these inexpensive operations, the quantities of
interest are interpolated onto a dense k-point mesh and used to evaluate the
anomalous Hall conductivity as a Brillouin zone integral. The present scheme,
which also avoids the cumbersome summation over all unoccupied states in the
Kubo formula, is applied to bcc Fe, giving excellent agreement with
conventional, less efficient first-principles calculations. Remarkably, we find
that more than 99% of the effect can be recovered by keeping a set of terms
depending only on the Hamiltonian matrix elements, not on matrix elements of
the position operator.Comment: 16 pages, 7 figure
Measurement of the Rise-Time in a Single Sided Ladder Detector
In this note we report on the measurement of the preamplifier output rise time for a SVXII chip mounted on a D0 single sided ladder. The measurements were performed on the ladder 001-883-L, using the laser test stand of Lab D. The rise time was measured for different values of the response (or bandwidth) of the preamplifier. As a bigger bandwidth results in longer rise times and therefore in less noise, the largest possible bandwidth consistent with the time between bunch crossings should be chosen to operate the detectors. The rise time is defined as the time elapsed between 10% and 90% of the charge is collected. It is also interesting to measure the time for full charge collection and the percentage of charge collected in 132 ns and 396 ns. The results are shown in table 1, for bandwidths between 2 and 63 (binary numbers). The uncertainty on the time measurement is considered to be {approx} 10 ns. Figure 1 schematically defines the four quantities measured: rise time, time of full charge collection, and percentage of charge collected in 132 ns and 396 ns. Figures 2 to 8 are the actual measurements for bandwidths of 2, 4, 8, 12, 24, 32 and 63. Figure 9 is a second measurement for BW=24, used as a consistency check of the system and the time measurement performed on the plots. The data indicate that the single sided ladders can be operated at BW=63 for 396 ns and BW=12 for 132 ns, achieving full charge collection. This will result in smaller noise than originally anticipated
Exciton states in monolayer MoSe2: impact on interband transitions
We combine linear and non-linear optical spectroscopy at 4K with ab initio
calculations to study the electronic bandstructure of MoSe2 monolayers. In
1-photon photoluminescence excitation (PLE) and reflectivity we measure a
separation between the A- and B-exciton emission of 220 meV. In 2-photon PLE we
detect for the A- and B-exciton the 2p state 180meV above the respective 1s
state. In second harmonic generation (SHG) spectroscopy we record an
enhancement by more than 2 orders of magnitude of the SHG signal at resonances
of the charged exciton and the 1s and 2p neutral A- and B-exciton. Our
post-Density Functional Theory calculations show in the conduction band along
the direction a local minimum that is energetically and in k-space
close to the global minimum at the K-point. This has a potentially strong
impact on the polarization and energy of the excitonic states that govern the
interband transitions and marks an important difference to MoS2 and WSe2
monolayers.Comment: 8 pages, 3 figure
The microstructure of plasmodesmata in internodal stem tissue of the Saccharum hybrid var. NCo376 : evidence for an apoplasmic loading pathway
The distribution, structure and functional state of plasmodesmata were investigated to gain a clearer understanding of the sucrose transport pathway to the storage parenchyma cells in stem tissue in Saccharum officinarum var. NCo376. Evidence from structural studies on sugarcane stems by electron microscopy indicated that there are numerous plasmodesmata from the vascular bundles through to the storage parenchyma cells in mature stem tissue. Our studies, supported by fluorescence microscopy and iontophoresis, indicate that there are functional plasmodesmata in the phloemunloading pathway from transport phloem tissue to the bundle sheath in Saccharum, which could support symplasmic transport; plasmodesmata outside of the sheath cells in the storage parenchyma appear to be constricted by sphincter-like structures within their neck regions. Staining with Aniline Blue revealed evidence of large callose deposits, which co-localized with plasmodesmatal aggregates in the walls of the storage parenchyma cells. This suggests that the sucrose transport into, and accumulation by, storage parenchyma of mature stem tissue is under apoplasmic control
The potential of three whole blood microRNAs to predict outcome and monitor treatment response in sarcoid-bearing equids.
MicroRNAs (miRNAs) have been proposed as biomarkers for equine sarcoid (ES) disease. In this study, the suitability of three whole blood miRNAs to diagnose ES and to predict and monitor the outcome of therapy was explored. Using reverse transcription-quantitative polymerase chain reaction (RT-qPCR), expression levels of eca-miR-127, eca-miR-379, and eca-miR-432 in whole blood of ES-affected equids before and at least one year after therapy were compared to those of unaffected control equids. Associations of age, sex, species, diagnosis, and therapy outcome with miRNA expression levels were examined using general linear models. In total, 48 ES-affected equids and 47 control equids were recruited. From the affected animals, 31 responded favorably to treatment, and 17 demonstrated a failure of therapy. None of the tested miRNAs were influenced by age. Male equids showed increased expression of eca-miR-127 compared to females and horses showed higher expression levels of eca-miR-379 and eca-miR-432 than donkeys. Eca-miR-127 was confirmed as a diagnostic discriminator between ES-affected and control equids. No difference in miRNA profiles before therapy was found when comparing ES-affected equids with success vs. failure of therapy. Eca-miR-379 and eca-miR-432 decreased over time in horses where therapy was successful, but not in those cases where it failed. Biological variables influence equine whole blood miRNA expression, which may complicate biomarker validation. While none of the tested miRNAs could predict the response to therapy in ES-affected equids and eca-miR-127 showed poor diagnostic accuracy for ES, eca-miR-379 and eca-miR-432 miRNAs might allow refinement of monitoring of success of ES therapy
The exploration of eastern Mediterranean deep hypersaline anoxic basins with MODUS: a significant example of technology spin-off from the Geostar Program
A significant example of technological spin-off from the GEOSTAR project is represented by the special-purpose instrumented module, based on the deep-sea ROV MODUS, which was developed in the framework of the EU-sponsored project BIODEEP. The goal to be achieved has been defined as the exploration, through real-time video images, measurements and accurate video-guided sampling, of the deep hypersaline anoxic basins of the eastern Mediterranean Sea at water depths well exceeding 3000 meters. Due to their peculiar characteristics, these basins are one of the most extreme environments on Earth and represent a site of utmost interest for their geochemical and microbial resources. The paper presents the strategies and the main results achieved during the two
cruises carried out within the BIODEEP project
Correlation between the Extraordinary Hall Effect and Resistivity
We study the contribution of different types of scattering sources to the
extraordinary Hall effect. Scattering by magnetic nano-particles embedded in
normal-metal matrix, insulating impurities in magnetic matrix, surface
scattering and temperature dependent scattering are experimentally tested. Our
new data, as well as previously published results on a variety of materials,
are fairly interpreted by a simple modification of the skew scattering model
- âŠ