27 research outputs found

    Heterogeneity of cell therapy products

    Get PDF
    Cellular therapy has become a billion-dollar industry and is set to become one of the therapeutic pillars of healthcare in the 21st century. Adult stem cells, which include haematopoietic stem and progenitor cells (HSPCs) and mesenchymal stromal/stem cells (MSCs), is one of the major cell types currently under investigation for use in cell therapy. This review focuses on HSPCs and MSCs and discusses their heterogeneous nature and the problems faced in expanding these cells to therapeutic numbers for use in clinical applications

    The role of Pref-1 during adipogenic differentiation : an overview of suggested mechanisms

    Get PDF
    Obesity contributes significantly to the global health burden. A better understanding of adipogenesis, the process of fat formation, may lead to the discovery of novel treatment strategies. However, it is of concern that the regulation of adipocyte di erentiation has predominantly been studied using the murine 3T3-L1 preadipocyte cell line and murine experimental animal models. Translation of these findings to the human setting requires confirmation using experimental models of human origin. The ability of mesenchymal stromal/stem cells (MSCs) to di erentiate into adipocytes is an attractive model to study adipogenesis in vitro. Di erences in the ability of MSCs isolated from di erent sources to undergo adipogenic di erentiation, may be useful in investigating elements responsible for regulating adipogenic di erentiation potential. Genes involved may be divided into three broad categories: early, intermediate and late-stage regulators. Preadipocyte factor-1 (Pref-1) is an early negative regulator of adipogenic di erentiation. In this review, we briefly discuss the adipogenic di erentiation potential of MSCs derived from two di erent sources, namely adipose-derived stromal/stem cells (ASCs) and Wharton’s Jelly derived stromal/stem cells (WJSCs). We then discuss the function and suggested mechanisms of action of Pref-1 in regulating adipogenesis, as well as current findings regarding Pref-1’s role in human adipogenesis.The South African Medical Research Council in terms of the SAMRC’s Flagship Award Project [SAMRC-RFAUFSP-01-2013/STEM CELLS], the SAMRC Extramural Unit for Stem Cell Research and Therapy, and the Institute for Cellular and Molecular Medicine of the University of Pretoria.http://www.mdpi.com/journal/ijmsam2020Oral Pathology and Oral Biolog

    Clofazimine, but Not Isoniazid or Rifampicin, Augments Platelet Activation in vitro

    Get PDF
    Although the inclusion of the cationic amphiphilic, anti-mycobacterial agent, clofazimine, in the chemotherapeutic regimens of patients with multidrug-resistant tuberculosis (TB) has contributed to improved outcomes, concerns remain about the cardiotoxic potential of this agent. Accordingly, the current study was undertaken with the primary objective of investigating the effects of clofazimine, on the reactivity of human platelets in vitro, a seemingly unexplored, mechanism of cardiotoxicity. Platelet-rich plasma (PRP) prepared from the blood of healthy, adult humans was treated with clofazimine (0.625–10 mg/L), or the primary anti-TB agents, isoniazid and rifampicin (at final concentrations of 5 and 10 mg/L), followed by addition of either adenosine 5′-diphosphate (ADP) or thrombin and measurement of platelet activation according to the magnitude of expression of CD62P (P-selectin), as well as the CD62P-mediated formation of heterotypic neutrophil:platelet (NP) aggregates, using flow cytometry. Clofazimine, but neither isoniazid nor rifampicin, caused dose-related potentiation of both ADP- and thrombin-activated expression of CD62P by platelets, achieving statistical significance at threshold concentrations of 0.625 and 2.5 mg/L, respectively, as well as significant formation of N:P aggregates. These stimulatory effects of clofazimine on platelet activation were partly attenuated by pre-treatment of PRP with the membrane-stabilizing agent, α-tocopherol, possibly consistent with a membrane-disruptive mechanism. In conclusion, clofazimine, at concentrations within the therapeutic range, augments platelet activation in vitro, probably by a mechanism linked to membrane destabilization. If operative in vivo, these pro-thrombotic activities of clofazimine may predispose for development of microvascular occlusion, exacerbating an already existing high risk for development of TB-associated cardiovascular disease

    The Beta-2-Adrenoreceptor Agonists, Formoterol and Indacaterol, but Not Salbutamol, Effectively Suppress the Reactivity of Human Neutrophils In Vitro

    Get PDF
    The clinical relevance of the anti-inflammatory properties of beta-2 agonists remains contentious possibly due to differences in their molecular structures and agonist activities. The current study has compared the effects of 3 different categories of β2-agonists, namely, salbutamol (short-acting), formoterol (long-acting) and indacaterol (ultra-long-acting), at concentrations of 1–1000 nM, with human blood neutrophils in vitro. Neutrophils were activated with either N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP, 1 µM) or platelet-activating factor (PAF, 200 nM) in the absence and presence of the β2-agonists followed by measurement of the generation of reactive oxygen species and leukotriene B4, release of elastase, and expression of the β2-integrin, CR3, using a combination of chemiluminescence, ELISA, colorimetric, and flow cytometric procedures respectively. These were correlated with alterations in the concentrations of intracellular cyclic-AMP and cytosolic Ca(2+). At the concentrations tested, formoterol and indacaterol caused equivalent, significant (P < 0.05 at 1–10 nM) dose-related inhibition of all of the pro-inflammatory activities tested, while salbutamol was much less effective (P < 0.05 at 100 nM and higher). Suppression of neutrophil reactivity was accompanied by elevations in intracellular cAMP and accelerated clearance of Ca(2+) from the cytosol of activated neutrophils. These findings demonstrate that β2-agonists vary with respect to their suppressive effects on activated neutrophils

    HIV and haematopoiesis

    Get PDF
    Human immunodeficiency virus (HIV) infection not only leads to a compromised immune system, but also disrupts normal haematopoiesis, resulting in the frequent manifestation of cytopenias (anaemia, thrombocytopenia and neutropenia). Although there is a definite association between the severity of cytopenia and HIV disease stage, this relationship is not always linear. For example, cytopenias such as thrombocytopenia may occur during early stages of infection. The aetiology of these haematological abnormalities is complex and multifactorial, including drug-induced impaired haematopoiesis, bone marrow suppression due to infiltration of infectious agents or malignant cells, HIV-induced impaired haematopoiesis, and several other factors. In this review, we describe the frequencies of anaemia, thrombocytopenia and neutropenia reported for HIV-infected, treatment-naïve cohorts studied in eastern and southern sub-Saharan African countries. We present a rational approach for the use of diagnostic tests during the workup of HIV-infected patients presenting with cytopenia, and discuss how HIV impacts on haematopoietic stem/progenitor cells (HSPCs) resulting in impaired haematopoiesis. Finally, we describe the direct and indirect effects of HIV on HSPCs which result in defective haematopoiesis leading to cytopenias

    The role of reactive oxygen species in adipogenic differentiation

    Get PDF
    Interest in reactive oxygen species and adipocyte differentiation/adipose tissue function is steadily increasing. This is due in part to a search for alternative avenues for combating obesity, which results from the excess accumulation of adipose tissue. Obesity is a major risk factor for complex disorders such as cancer, type 2 diabetes, and cardiovascular diseases. The ability of mesenchymal stromal/stem cells (MSCs) to differentiate into adipocytes is often used as a model for studying adipogenesis in vitro. A key focus is the effect of both intra- and extracellular reactive oxygen species (ROS) on adipogenesis. The consensus from the majority of studies is that ROS, irrespective of the source, promote adipogenesis. The effect of ROS on adipogenesis is suppressed by antioxidants or ROS scavengers. Reactive oxygen species are generated during the process of adipocyte differentiation as well as by other cell metabolic processes. Despite many studies in this field, it is still not possible to state with certainty whether ROS measured during adipocyte differentiation are a cause or consequence of this process. In addition, it is still unclear what the exact sources are of the ROS that initiate and/or drive adipogenic differentiation in MSCs in vivo. This review provides an overview of our understanding of the role of ROS in adipocyte differentiation as well as how certain ROS scavengers and antioxidants might affect this process.The South African Medical Research Council in terms of the SAMRC's Flagship Award Project SAMRC-RFA-UFSP-01-2013/STEM CELLS, the SAMRC Extramural Unit for Stem Cell Research and Therapy and the Institute for Cellular and Molecular Medicine of the University of Pretoria.http://www.springer.comseries/5584hj2019GeneticsImmunologyOral Pathology and Oral Biolog

    Validation of merocyanine 540 staining as a technique for assessing capacitation-related membrane destabilization of fresh dog sperm

    Get PDF
    The aim of this study was to determine whether flow cytometric evaluation of combined merocyanine 540 and Yo-Pro 1 (M540-YP) staining would identify viable dog sperm that had undergone membrane stabilization known to be associated with capacitation in other species, and whether such destabilization is detected earlier than when using the tyrosine phosphorylation and ethidium homodimer (TP-EH) stain combination with epifluorescence microscopy. Semen from nine dogs was collected and incubated in parallel in bicarbonate-free modified Tyrode's medium (-BIC), medium containing 15 mM bicarbonate (+BIC), dog prostatic fluid, and in PBS. Aliquots for staining were removed at various time points during incubation of up to 6 hours. Staining with M540-YP allowed the classification of dog sperm as viable without destabilized membranes, viable with destabilized membranes, nonviable without destabilized membranes, or nonviable with destabilized membranes. The percentage of viable sperm detected using EH (83.5 ± 1.37%; mean ± SEM) was higher than when using YP (66.7 ± 1.37%: P < 0.05; n = 54 semen samples). On the other hand, M540-YP identified a higher percentage of viable sperm with destabilized membranes than TP-EH (75 ± 1.76% vs. 35 ± 1.70%: P < 0.05; n = 54 semen samples). Staining with M540-YP indicated a rapid increase in the percentage of viable sperm with destabilized membranes, reaching a maximum during the first 30 minutes of incubation in +BIC. For all other treatments (i.e., -BIC, prostatic fluid, and PBS), the peak in the percentage of viable sperm with destabilized membranes was reached as much as 90 to 210 minutes later than incubation in +BIC. The lowest percentage of viable sperm showing signs of capacitation was recorded during incubation in PBS. We conclude that YP identifies sperm committed to cell death earlier than EH, and that the M540-YP stain combination identifies membrane destabilization known to be associated with capacitation in other species earlier than the TP-EH stain combination

    Validation of merocyanine 540 staining as a technique for assessing capacitation-related membrane destabilization of fresh dog sperm

    No full text
    The aim of this study was to determine whether flow cytometric evaluation of combined merocyanine 540 and Yo-Pro 1 (M540-YP) staining would identify viable dog sperm that had undergone membrane stabilization known to be associated with capacitation in other species, and whether such destabilization is detected earlier than when using the tyrosine phosphorylation and ethidium homodimer (TP-EH) stain combination with epifluorescence microscopy. Semen from nine dogs was collected and incubated in parallel in bicarbonate-free modified Tyrode's medium (-BIC), medium containing 15 mM bicarbonate (+BIC), dog prostatic fluid, and in PBS. Aliquots for staining were removed at various time points during incubation of up to 6 hours. Staining with M540-YP allowed the classification of dog sperm as viable without destabilized membranes, viable with destabilized membranes, nonviable without destabilized membranes, or nonviable with destabilized membranes. The percentage of viable sperm detected using EH (83.5 ± 1.37%; mean ± SEM) was higher than when using YP (66.7 ± 1.37%: P < 0.05; n = 54 semen samples). On the other hand, M540-YP identified a higher percentage of viable sperm with destabilized membranes than TP-EH (75 ± 1.76% vs. 35 ± 1.70%: P < 0.05; n = 54 semen samples). Staining with M540-YP indicated a rapid increase in the percentage of viable sperm with destabilized membranes, reaching a maximum during the first 30 minutes of incubation in +BIC. For all other treatments (i.e., -BIC, prostatic fluid, and PBS), the peak in the percentage of viable sperm with destabilized membranes was reached as much as 90 to 210 minutes later than incubation in +BIC. The lowest percentage of viable sperm showing signs of capacitation was recorded during incubation in PBS. We conclude that YP identifies sperm committed to cell death earlier than EH, and that the M540-YP stain combination identifies membrane destabilization known to be associated with capacitation in other species earlier than the TP-EH stain combination
    corecore