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The 2017 World Health Organization 
report[1] indicates that ~37 million people 
are infected with human immunodeficiency 
virus (HIV) in sub-Saharan Africa. Southern 
and eastern sub-Saharan Africa are most 
affected by the pandemic, contributing 
53% of global HIV-infected cases. With ~7 
million persons infected (12.6% of the total 
population), South Africa (SA) carries the 
highest HIV-associated disease burden in 
this region.[1] As its name indicates, HIV 
targets the immune system, resulting in 
progressive immune dysfunction. HIV 
infection leads not only to a weakened 
immune system, but also impacts negatively 
on the haematopoietic system of infected 
individuals. This is not surprising, as a close 
link exists between the haematopoietic and 
immune systems.

Haematopoietic stem/
progenitor cells
Haematopoietic stem/progenitor cells 
(HSPCs) constitute a heterogeneous 
population that resides in the bone 
marrow (BM) and has the ability to 
differentiate into all the mature blood 
cell types (Fig. 1), thereby contributing 
to continuous maintenance of healthy 
blood cell production (haematopoiesis).[2] 

It is currently not possible to distinguish 
between true haematopoietic stem cells 
(HSCs) and early haematopoietic progenitor 
cells (HPCs). Both true (primitive) stem 

cells and progenitors reside in the bone 
marrow and both sub-populations have 
self-renewal properties, in addition to their 
differentiation capabilities.[3] In this review 
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Fig. 1. Schematic illustration of the differentiation of haematopoietic stem/progenitor cells (HSPCs) 
into mature blood cell types. (MPP = multipotent progenitor; CMP = common myeloid progenitor;  
CLP = common lymphoid progenitor; MEP = megakaryocyte-erythroid progenitor; GMP = granulocyte-
macrophage progenitor; NK = natural killer cell.) 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by South African Medical Journal (SAMJ)

https://core.ac.uk/display/230862865?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


S42       August 2019, Vol. 109, No. 8 (Suppl 1)

RESEARCH

we have therefore opted to collectively refer 
to these cells as HSPCs, which encompasses 
both HSCs and HPCs. Progressive depletion 
of HSPCs or suppression of HSPC function 
both result in defective haematopoiesis 
which manifests clinically as cytopenias. 

Cytopenias are indeed common in 
HIV-infected individuals and are briefly 
summarised later in the review. The 
pathophysiology of the haematological 
abnormalities have not been fully elucidated, 
but has been suggested to be complex and 
multifactorial.[4] The pathophysiology of 
cytopenias can broadly be divided into two 
groups: factors (i) directly associated with the 
impact of HIV on HSPC function, and (ii) 
not directly associated with HSPC function. 
The suggested mechanisms directly resulting 
from HIV are briefly discussed in this review, 
while factors not directly associated with 
HSPC function are summarised in Fig. 2.

Haematological 
abnormalities
Cytopenias are the most common 
haematological abnormality associated with 
HIV infection and may affect any of the 
major blood lineages leading to anaemia, 
thrombocytopenia and/or neutropenia.[4,5] 
The prevalence of cytopenias in treatment-
naïve HIV-infected adult cohorts, reported 
between 2010 and 2018, in English-speaking 
eastern and southern sub-Saharan African 
countries, is summarised in Fig. 3. There are 
no published reports available from French-
speaking countries in the eastern and 
southern sub-Saharan African region. These 
countries include: Ethiopia (10 reports);[6-15] 
Malawi (1 report);[16] SA (6 reports);[17-21] 
Rwanda (1 report);[22] Tanzania (1 report);[23] 
Uganda (4 reports);[24-27] and Zimbabwe  
(1 report).[19] The size of the cohorts ranged 
from 30 - 15 030 patients. 

The severity and prevalence of cytopenias 
are associated with disease stage and 
generally improve with combination anti-
retroviral therapy (cART). Severe cytopenias, 
especially anaemia and thrombocytopenia, 
are associated with increased morbidity 
and poorer quality of life.[7,10,17] HIV-
associated haematological abnormalities 
should be managed appropriately by 
healthcare providers.[4,5] The diagnosis and 
treatment of haematological abnormalities 
in HIV-infected individuals have been 
comprehensively reviewed elsewhere.[4,5] 

Criteria used to define cytopenias
The criteria used by the respective studies 
represented in Fig. 3 to define anaemia, 
thrombocytopenia and neutropenia are 

listed in Table 1.
The most common cytopenias observed 

in HIV-infected individuals in the English-
speaking eastern and southern sub-Saharan 
region are briefly discussed below. The 
frequencies of anaemia, thrombocytopenia, 
neutropenia represent the percentage of 
individuals, within the respective study 
populations (Fig. 3), who presented with 
the specific cytopenia, irrespective of it 
being observed in the presence of other 
cytopenias (bi- and pancytopenia). The 
reported percentages are thus not necessarily 
representative of isolated cytopenias.

Anaemia
Anaemia is the most common cytopenia 
observed in HIV-infected individuals and 
is often associated with other cytopenias 
(Fig. 2). The reported prevalence of 
anaemia ranges from 8.4% to 70% 
(median 29.9; interquartile range (IQR)  
21.2 - 52.6) (Fig. 3) in the treatment-naïve 
cohorts studied.[6-10,13-25,27-30] The severity of 
anaemia is often used as an indicator of a 
poor prognosis in resource-poor settings, 
independent of the CD4 count. This practice 
should be discouraged as some causes of 

anaemia, such as nutritional deficiencies, 
are unrelated to HIV infection and disease 
stage (Fig. 2).[7] Factors causing anaemia 
in HIV-infected individuals can broadly 
be divided into three main categories: (i) 
decreased red blood cell (RBC) production 
in the BM; (ii) increased RBC destruction; 
and (iii) ineffective RBC production due 
to nutritional deficiencies[31] (Fig. 2). It is 
therefore not surprising that, despite the 
wide use of cART, HIV-related anaemia 
remains a significant problem.[4] However, 
recent reports indicate that HIV-infected 
patients generally recover from anaemia 
when receiving cART regimens.[7,10] 

Thrombocytopenia
The reported prevalence of thrombo-
cytopenia ranges from 4.1% to 26.7% 
(median 16.2; IQR 12.0 - 25.1)  
(Fig. 3) in the treatment-naïve cohorts 
studied.[7,8,11,12,21-26] Although the prevalence 
and severity of thrombocytopenia 
is associated with disease stage, the 
relationship is not always linear as 
newly infected patients with HIV may 
also present with thrombocytopenia.[4] 
Thrombocytopenia is also more frequently 
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Fig. 2. A schematic breakdown of the most relevant non HSPC-associated causes that contribute to the 
development of cytopenias in infected individuals. The pink block (top) summarises causes that result 
in the presentation of isolated anaemia. The white area summarises causes that may lead to multiple 
cytopenias simultaneously (bi- or pancytopenias). HIV-associated ITP (green block, bottom) leads 
to the presentation of isolated thrombocytopenia. (BM = bone marrow; ACD = anaemia of chronic 
disease; PRCA = pure red cell aplasia; TP = thrombotic thrombocytopenic purpura; ITP = immune 
thrombocytopenic purpura.)
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seen in patients with viral hepatitis co-infection. The main causes of 
thrombocytopenia are inadequate platelet production and/or auto-
immune-mediated platelet destruction.[24] 

Immune thrombocytopenic purpura (ITP) is the most common 
cause of thrombocytopenia in HIV-infected individuals, and often 
occurs at the initial stages of infection.[4,5] The pathogenesis of ITP 
is still not clear, but both antibody-mediated and/or T cell-mediated 
processes seem to be involved in ITP-associated platelet destruction.[32]  
However, it is not clear if both these processes are also involved in 
HIV-associated ITP. The manifestation of ITP appears to be primarily 
in response to an auto-immune reaction in which HIV envelope 

glycoprotein 160/120 antigens are recognised by the immune system 
to be similar to the immunodominant GPIIIa49-66 epitope of platelet 
glycoprotein IIIa (GPIIIa) integrin through a process called molecular 
mimicry. This gives rise to cross-reactive anti-platelet auto-antibodies 
and ultimately auto-immune mediated platelet destruction.[32] 
Although ITP occurs more frequently during the initial stages of HIV 
infection, it may manifest at any stage of the disease.[5] 

In addition, HIV-infected individuals, particularly those with 
advanced disease, have elevated serum markers of systemic immune 
activation including C-reactive protein (CRP).[33] CRP enhances 
IgG-mediated platelet destruction by binding to phagocytes where 
it enhances phagocytosis of opsonised platelets.[34] This role of CRP 
provides important insight into the onset and exacerbations of ITP 
in the broad setting of systemic immune activation secondary to 
chronic infection.

The more severe and potentially lethal thrombotic 
thrombocytopenic purpura (TTP) manifests less frequently than ITP. 
HIV is the most common virus precipitating TTP[5] and the most 
common cause of TTP in SA. In general, women are more affected 
by idiopathic TTP than men.[5,35] Furthermore, treatment-naïve 
African females with advanced HIV are at a significantly higher risk 
of presenting with TTP, suggesting a potential underlying genetic 
pre-disposition in the African female population.[35] Acquired TTP 
is an auto-immune disease caused by circulating auto-antibodies 
to the metabolically active A Disintegrin And Metalloproteinase 
with Thrombospondin type 1 Motif 13 (ADAMTS13) enzyme.[35] 
Ineffective cleavage by ADAMTS13 leads to ultra-large, uncleaved 
von Willebrand factor (VWF) strings, which bind to platelets to 
form microthrombi causing intravascular haemolysis and organ 
ischaemia.[5] The exact role of HIV in the pathophysiology of TTP is, 
however, still not clear. Because of the severity of TTP, it is important 
to rule it out in HIV-infected individuals, especially African women, 
presenting with severe thrombocytopenia.[4] As most automatic 
haematology analysers are unable to reliably detect and report 
erythrocyte fragments, it is important to request a blood smear 
investigation when TTP is suspected.

HIV-associated neutropenia
Neutropenia has been reported in 0% to 28.3% (median 
12.1%; IQR 1.5 - 26.2%) (Fig. 3) of treatment-naïve patients  
studied.[7,8,19-22,25,30] The wide range of frequencies reported for 
HIV-associated neutropenia is likely to be associated with the 
severity of HIV disease and the use of prophylactic drugs, such as 
cotrimoxazole, which is known to cause bone marrow suppression 
through the inhibition of folic acid metabolism. A low CD4 T 
cell count and high HIV plasma viral load are risk factors for 
developing neutropenia. Thus, neutropenia is especially prevalent 
in persons with advanced disease and is usually associated with 
other cytopenias, i.e. bicytopenia and pancytopenia (Fig. 2).[13,23,25] 
In addition, neutropenia severity is related to risk of opportunistic 
co-infection, with a count below 1 ×109 neutrophils/L indicating a 
significantly increased risk.[4] Benign, ethnic neutropenia has a high 
prevalence in individuals of African descent.[36,37] Therefore, ethnic 
neutropenia should be considered and ruled out in individuals who 
present with low neutrophil counts (<2 500 cells/µL).[38] 

Direct effect of HIV on 
haematopoiesis: Suggested 
mechanisms
Morphological changes of secondary dysplasia are often observed 
in the bone marrow of HIV-infected individuals. HIV itself may 
be responsible for impaired haematopoiesis, either through (i) 

Fig. 3. Prevalence of cytopenias reported in HIV-infected, treatment-naive 
cohorts. Scatter dot plot is used to illustrate the percentage ranges reported 
in 22 (anaemia),[6-10,13-25,27-30] 8 (thrombocytopenia)[7,8,11,12,21-26] and 6 
(neutropenia)[7,8,19,21,22,25,30] studies (black symbols). Median percentages are 
indicated by a solid black horizontal line within each group (cytopenia). Red 
symbols indicate frequencies reported in South African studies. Blue symbols 
represent data obtained from an HIV-infected, treatment-naive cohort at 
Eersterust Community Health Clinic, Pretoria, South Africa, between 
February and July 2016 (n=117; unpublished data). 

Table 1. Criteria used to define cytopenias
Cytopenia Criteria References*

Anaemia
(Hb; g/dL)

<9.5 16, 20

<10
6, 11, 12, 15, 
17, 22

<10.5 9
<13 (males)
<12 (females)

7, 8, 10, 13, 
21, 24-26

<14 (males)
<12 (females)

14, 19

<12 (males)
<10 (females)

18, 27

Thrombocytopenia
(platelet count; 103/µL)

<125
18, 19, 24, 
26, 28

<150 7, 29
<125 (females)
<156 (males)

27

Neutropenia
(Neutrophil count; cells/µL)

<750 11, 20
<1 000 7
<1 000
WBC <2 000

18

<2 000 19

WBC = white blood cells.
*Some studies did not mention the criteria that were used and were therefore excluded 
from the table.
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direct infection of HSPCs, (ii) HIV-induced apoptosis of HSPCs, 
(iii) disruption of the optimal functioning of the stromal cell 
network within the bone marrow, (iv) HIV-associated auto-immune 
reactions; and/or (v) through HIV-induced changes in cell signalling 
events regulating proliferation and differentiation of HSPCs. These 
mechanisms ultimately lead to the depletion of HSPCs and/or an 
altered proliferation and differentiation capacity of their progeny. 
These five mechanisms are briefly discussed below.

Direct infection of HSPCs
C-C motif chemokine receptor type 5 (CCR5) and C-X-C motif 
chemokine receptor type 4 (CXCR4) are co-receptors which, together 
with CD4, enable receptor-mediated entry of HIV into host cells, 
such as CD4+ T cells.[39] As HSPCs express low levels of CD4[40,41] and 
variable levels of CCR5 and CXCR4,[42] they are potentially susceptible 
to HIV infection. Primitive HSCs (Fig. 1) tend to express CXCR4, 
but not CCR5, suggesting that primitive HSCs are more susceptible 
to CXCR4-tropic virus.[43,44] This observation may explain the rapid 
disease progression upon viral transition from CCR5 to the more 
virulent CXCR4 tropism.[45] However, the jury is still out as to whether 
HIV is able to directly infect HSPCs. Carter et al.[42] and Nixon et 
al., [43] among others, propose that HIV is able to infect HSPCs and 
thereby contribute to a latent reservoir pool. Other authors[46,47] oppose 
this view as they could find no evidence of HIV infection in HSPCs. 
Despite uncertainty about direct infection, in vitro and ex vivo studies 
have shown that HIV decreases the ability of HSPCs to optimally 
proliferate and differentiate into mature blood cell lineages.[5,40]

The majority of studies that have investigated the ability of HIV 
to infect HSPCs are laboratory-based.[40-42,47,48] Due to ethical and 
logistical challenges related to obtaining sufficient volumes of 
bone marrow aspirate from HIV-infected individuals, patient (ex 
vivo)-based studies are scarce. In an isolated study, Redd et al.[40] 
reported that HIV-1 subtype C (HIV-1C), but not HIV-1 subtype 
B (HIV-1B), has the potential to infect HSCs. Several studies have 
suggested that the pathogenicity of HIV-1C may differ significantly 
from HIV-1B.[51,52] HIV-1C is reported to be less cytopathic than 
other subtypes, which may result in a greater ability to persist in a 
latent form for long periods of time in infected host cells.[52] This may 
have important implications for sub-Saharan African populations, 
which have the world’s largest proportion of HIV-1C infections.

HIV-induced apoptosis of HSPCs
In vitro studies have shown that antibody/viral protein complexes 
such as anti-gp120/gp120 complexes are able to bind with high 
affinity to CD4 molecules expressed on the surface of HSPCs and 
in so doing induce apoptosis via a Fas-dependent mechanism. 
This mechanism is independent of direct HIV infection of HSPCs. 
Viral proteins such as gp120 and Tat not only seem to play a role in 
HIV-mediated apoptosis of HSPCs, but also impair proliferation of 
HSPCs by increasing the production of transforming growth factor 
β1 (TGFβ1), a negative regulator of haematopoiesis, by HSPCs.[53,54] 

Impaired stromal cell network in the bone marrow niche
The bone marrow stroma refers to the cellular fraction of the bone 
marrow, excluding HSPCs. Bone marrow stroma consists of a 
heterogeneous pool of cells, including macrophages, endothelial cells, 
mesenchymal stromal cells and Schwann cells.[55] An optimal bone 
marrow stroma micro-environment is essential for the maintenance, 
regulation and support of HSC proliferation and differentiation. HIV 
infection results in changes in the bone marrow stromal structure. 
For example, increased numbers of fibroblasts and macrophage-like 
cells are observed in the bone marrow of HIV-infected individuals. 

In addition, bone marrow-associated macrophages are susceptible to 
both the CCR5- and CXCR4-tropic HIV-1 strains.[56] HIV infections 
also result in changes in the multipotent clonogenic potential of bone 
marrow-associated mesenchymal stromal cells. Both in vitro and ex 
vivo studies suggest that bone marrow-derived mesenchymal and 
endothelial cells can be directly infected with HIV, resulting in altered 
cytokine signalling and consequently HSPC death.[57,58] These HIV-
associated alterations in bone marrow stroma composition and the cell 
signalling milieu result in a supporting micro-environment that is sub-
optimal for HSPCs. Defective haematopoiesis therefore ensues.[54,59] 

HIV-associated auto-immune reactions
The main cause of HIV-associated ITP is immune-mediated 
destruction of platelets due to an auto-immune reaction resulting 
in antibodies against HIV envelope proteins cross reacting with 
the GPIIIa49-66 epitope present on the surface of platelets.[60] It is 
also suggested that a cross reaction between anti-erythropoietin 
(anti-EP1) antibodies and the viral Gag fragment results in impaired 
erythropoiesis and the consequent manifestation of anaemia.[53] 

Auto-antibody-mediated destruction of erythrocytes 
results in the presentation of autoimmune haemolytic  
anaemia (AIHA).[61] Although rare, there are reports of 
HIV-infected individuals that present with AIHA.[62,63]  
The pathophysiology of HIV-associated AIHA is not fully 
elucidated and several potential mechanisms have been 
proposed. Suggested mechanisms include abnormal B 
cell regulation by HIV-infected T cells, direct HIV-induced  
B cell activation and B-cell responses to CMV or Epstein-Barr  
virus.[61] It is proposed that these mechanisms lead to HIV-
associated dysregulation of antibody production.[61]

HIV-mediated disruption of the cell signalling network
HIV alters the cytokine milieu within the bone marrow stroma.[54]  
HIV-mediated cytokine signalling disruption involves various 
cytokines and haematopoietic factors, such as interleukin (IL)-1, 
IL-6, IL-18 and granulocyte colony-stimulating factor (G-CSF) 
among others. These cytokines play a critical role in regulating 
and maintaining normal haematopoiesis and any imbalance may 
negatively impact on haematopoiesis. Several studies have shown that 
the plasma cytokine profiles of HIV-infected individuals differ from 
the profiles of uninfected individuals.[64,65] Higher levels of IL-1, IL-6, 
IL-7,  G-CSF and tumour necrosis factor α (TNFα) were detected in 
the plasma of HIV-infected patients. Pro-inflammatory cytokines 
TNFα, IL-1 and IL-6 and chemokines macrophage inflammatory 
protein (MIP)-1α, MIP-1β and RANTES were also found to be 
up-regulated in the bone marrow of HIV-infected individuals.[54] 
This chronic dysregulation of cell signalling pathways has a negative 
impact on HSPC proliferation and differentiation. HIV infection also 
causes a decrease in endogenous G-CSF,[4,13] which in turn results in 
impaired proliferation and differentiation of GMPs, the progenitors 
that give rise to neutrophils, monocytes and macrophages (Fig. 1). It 
has been found that G-CSF treatment results in increased neutrophil 
counts and restores neutrophil function in HIV-infected individuals, 
reducing the risk of co-infection in neutropenic patients.[4]

Diagnostic usefulness of bone marrow 
examination to determine the cause of 
cytopenias
While it is appreciated that the causes of cytopenias in HIV are 
multifactorial, bone marrow aspirates and trephine biopsies may 
demonstrate marrow involvement by a malignant process or bone 
marrow infiltrating opportunistic infections, such as Mycobacterium 
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tuberculosis.[66,67] Routine bone marrow sampling to elucidate the 
cause of a single cytopenia may be less valuable.[4,67] Bone marrow 
sampling should only be considered in the presence of multiple 
cytopenias, as well as constitutional symptoms such as fever.[68] A 
distinct advantage of marrow sampling over other diagnostic tests 
such as blood cultures, is the rapidity with which a diagnosis can be 
made and acted upon.[66,67] 

Future treatment strategies 
involving restoration of an immune/
haematopoietic system resistant to 
HIV-infection
In 2007, Timothy Brown, also known as the ‘Berlin patient’, was cured 
of HIV after receiving a haematopoietic stem cell transplant for acute 
myeloid leukaemia from a CCR5-null stem cell donor.[69] A germline 
mutation in the CCR5 gene (delta-32 deletion) was identified in the 
donor cells; all transplanted cells and their progeny were resistant to 
CCR5-tropic (R5) HIV-1 infection.[69] This observation has focused 
attention on the interactions between HIV and HSPCs and has 
sparked interest in using genetically modified HSPCs as a treatment 
strategy to eliminate HIV in infected individuals. Findings thus 
far are encouraging, and importantly such approaches have been 
shown to be safe in humans. In addition to HSPC-based CCR5-
targeted gene therapy, there is increasing evidence that CCR5 gene-
modified T cells may be a useful cell therapy strategy for achieving a 
potential HIV cure and may therefore be an attractive alternative to 
genetically modified HSPCs in the future.[70] 

Conclusion
The severity of cytopenias (except thrombocytopenia) presented 
by patients infected with HIV is usually associated with advancing 
disease stage. Thus, clinicians should have a high index of suspicion 
of possible HIV infection in any patient presenting with a cytopenia. 
The cause of cytopenias in the context of HIV infection is usually 
multifactorial. In patients who are afebrile and asymptomatic, HIV 
itself may be the cause. Suggested mechanisms of HIV impairment of 
haematopoiesis include those unrelated to HIV/HSPCs interactions 
(e.g. drug and/or coinfection induced), indirect influence of HIV 
on HSPCs (e.g. HIV-induced changes in the cytokine signalling 
milieu) and mechanisms in which HIV directly impacts on the 
functioning and survival of HSPC (e.g. direct infection of HSPCs by 
HIV). Diagnostic workups of cytopenias should be rational, carefully 
employing history and clinical examination together with a logical 
step-wise use of laboratory tests before bone marrow sampling is 
considered. Lastly, further research is necessary to elucidate the 
interactions between HIV and HSPCs. A better understanding 
of these interactions may contribute to unlocking the potential 
contained in genetically modified cell therapies as a treatment 
modality for patients infected with HIV.
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