303 research outputs found

    Discussion on Compensation of Engineers and Architects

    Get PDF

    Parent/Caregiver Lack of Knowledge: A Barrier for Youth Swimming Ability?

    Get PDF
    This study examined how a parent’s lack of knowledge of potential opportunities and barriers may restrict the child’s opportunity to learn how to swim. A survey was completed in multiple urban areas (N=524), where parents/caregivers reported their child’s swimming ability, as well as the parent’s knowledge of possible barriers to their child’s participation in swimming. ANOVA results suggested that the only significant difference between the presence of barriers groupings for child’s swimming ability were based on the availability of a pool and ease of access. For potential barriers examined, the group who lacked of barriers had a significantly lower perception of their child’s swimming ability than the group who recognized barriers (p\u3c.001 for all), suggesting that while physical barriers may play a role in a child’s likelihood of learning to swim, the most significant barrier may be the involvement and knowledge of the parent/caregiver

    Computational Opioid Prescribing: A Novel Application of Clinical Pharmacokinetics

    Get PDF
    We implemented a pharmacokinetics-based mathematical modeling technique using algebra to assist pre-scribers with point-of-care opioid dosing. We call this technique computational opioid prescribing (COP). Because population pharmacokinetic parameter values are needed to estimate drug dosing regimen designs for individual patients using COP, and those values are not readily available to prescribers because they exist scattered in the vast pharmacology literature, we estimated the population pharmacokinetic parameter values for 12 commonly prescribed opioids from various sources using the bootstrap resampling technique. Our results show that opioid dosing regimen design, evaluation, and modification is feasible using COP. We conclude that COP is a new technique for the quantitative assessment of opioid dosing regimen design evaluation and adjustment, which may help prescribers to manage acute and chronic pain at the point-of-care. Potential benefits include opioid dose optimization and minimization of adverse opioid drug events, leading to potential improvement in patient treatment outcomes and safety

    Evaluation of Brain Iron Content Based on Magnetic Resonance Imaging (MRI): Comparison among Phase Value, R2* and Magnitude Signal Intensity

    Get PDF
    Background and Purpose: Several magnetic resonance imaging (MRI) techniques are being exploited to measure brain iron levels increasingly as iron deposition has been implicated in some neurodegenerative diseases. However, there remains no unified evaluation of these methods as postmortem measurement isn’t commonly available as the reference standard. The purpose of this study was to make a comparison among these methods and try to find a new index of brain iron. Methods: We measured both phase values and R2 * in twenty-four adults, and performed correlation analysis among the two methods and the previously published iron concentrations. We also proposed a new method using magnitude signal intensity and compared it with R2 * and brain iron. Results: We found phase value correlated with R2 * in substantia nigra (r = 20.723, p,0.001) and putamen (r = 20.514, p = 0.010), while no correlations in red nucleus (r = 20.236, p = 0.268) and globus pallidus (r = 20.111, p = 0.605). And the new magnitude method had significant correlations in red nucleus (r = 20.593, p = 0.002), substantia nigra (r = 20.521, p = 0.009), globus pallidus (r = 20.750, p,0.001) and putamen (r = 20.547, p = 0.006) with R2*. A strong inverse correlation was also found between the new magnitude method and previously published iron concentrations in seven brain regions (r = 20.982, P,0.001). Conclusions: Our study indicates that phase value may not be used for assessing the iron content in some brain region

    Microarray and Proteomic Analyses of Myeloproliferative Neoplasms with a Highlight on the mTOR Signaling Pathway

    Get PDF
    The gene and protein expression profiles in myeloproliferative neoplasms (MPNs) may reveal gene and protein markers of a potential clinical relevance in diagnosis, treatment and prediction of response to therapy. Using cDNA microarray analysis of 25,100 unique genes, we studied the gene expression profile of CD34(+) cells and granulocytes obtained from peripheral blood of subjects with essential thrombocythemia (ET), polycythemia vera (PV) and primary myelofibrosis (PMF). The microarray analyses of the CD34(+) cells and granulocytes were performed from 20 de novo MPN subjects: JAK2 positive ET, PV, PMF subjects, and JAK2 negative ET/PMF subjects. The granulocytes for proteomic studies were pooled in 4 groups: PV with JAK2 mutant allele burden above 80%, ET with JAK2 mutation, PMF with JAK2 mutation and ET/PMF with no JAK2 mutation. The number of differentially regulated genes was about two fold larger in CD34(+) cells compared to granulocytes. Thirty-six genes (including RUNX1, TNFRSF19) were persistently highly expressed, while 42 genes (including FOXD4, PDE4A) were underexpressed both in CD34(+) cells and granulocytes. Using proteomic studies, significant up-regulation was observed for MAPK and PI3K/AKT signaling regulators that control myeloid cell apoptosis and proliferation: RAC2, MNDA, S100A8/9, CORO1A, and GNAI2. When the status of the mTOR signaling pathway related genes was analyzed, PI3K/AKT regulators were preferentially up-regulated in CD34(+) cells of MPNs, with down-regulated major components of the protein complex EIF4F. Molecular profiling of CD34(+) cells and granulocytes of MPN determined gene expression patterns beyond their recognized function in disease pathogenesis that included dominant up-regulation of PI3K/AKT signaling

    Co expression of SCF and KIT in gastrointestinal stromal tumours (GISTs) suggests an autocrine/paracrine mechanism

    Get PDF
    KIT is a tyrosine kinase receptor expressed by several tumours, which has for specific ligand the stem cell factor (SCF). KIT is the main oncogene in gastrointestinal stromal tumours (GISTs), and gain-of-function KIT mutations are present in 70% of these tumours. The aim of the study was to measure and investigate the mechanisms of KIT activation in 80 KIT-positive GIST patients. KIT activation was quantified by detecting phosphotyrosine residues in Western blotting. SCF production was determined by reverse transcriptase–PCR, ELISA and/or immunohistochemistry. Primary cultures established from three GISTs were also analysed. The results show that KIT activation was detected in all cases, even in absence of KIT mutations. The fraction of activated KIT was not correlated with the mutational status of GISTs. Membrane and soluble isoforms of SCF mRNA were present in all GISTs analysed. Additionally, SCF was also detected in up to 93% of GISTs, and seen to be present within GIST cells. Likewise, the two SCF mRNA isoforms were found to be expressed in GIST-derived primary cultures. Thus, KIT activation in GISTs may in part result from the presence of SCF within the tumours
    • …
    corecore