302 research outputs found

    The NMDA receptor GluN2C subunit controls cortical excitatoryinhibitory balance, neuronal oscillations and cognitive function

    Get PDF
    Despite strong evidence for NMDA receptor (NMDAR) hypofunction as an underlying factor for cognitive disorders, the precise roles of various NMDAR subtypes remains unknown. The GluN2Ccontaining NMDARs exhibit unique biophysical properties and expression pattern, and lower expression of GluN2C subunit has been reported in postmortem brains from schizophrenia patients. We found that loss of GluN2C subunit leads to a shift in cortical excitatory-inhibitory balance towards greater inhibition. Specifically, pyramidal neurons in the medial prefrontal cortex (mPFC) of GluN2C knockout mice have reduced mEPSC frequency and dendritic spine density and a contrasting higher frequency of mIPSCs. In addition a greater number of perisomatic GAD67 puncta was observed suggesting a potential increase in parvalbumin interneuron inputs. At a network level the GluN2C knockout mice were found to have a more robust increase in power of oscillations in response to NMDAR blocker MK- 801. Furthermore, GluN2C heterozygous and knockout mice exhibited abnormalities in cognition and sensorimotor gating. Our results demonstrate that loss of GluN2C subunit leads to cortical excitatoryinhibitory imbalance and abnormal neuronal oscillations associated with neurodevelopmental disorders

    Systematic study of Oxygen vacancy tunable transport properties of few-layer MoO3- x enabled by vapor-based synthesis

    Get PDF
    Bulk and nanoscale molybdenum trioxide (MoO3) has shown impressive technologically relevant properties, but deeper investigation into 2D MoO3 has been prevented by the lack of reliable vapor-based synthesis and doping techniques. Herein, the successful synthesis of high-quality, few-layer MoO3 down to bilayer thickness via physical vapor deposition is reported. The electronic structure of MoO3 can be strongly modified by introducing oxygen substoichiometry (MoO3- x), which introduces gap states and increases conductivity. A dose-controlled electron irradiation technique to introduce oxygen vacancies into the few-layer MoO3 structure is presented, thereby adding n-type doping. By combining in situ transport with core-loss and monochromated low-loss scanning transmission electron microscopy–electron energy-loss spectroscopy studies, a detailed structure–property relationship is developed between Mo-oxidation state and resistance. Transport properties are reported for MoO3- x down to three layers thick, the most 2D-like MoO3- x transport hitherto reported. Combining these results with density functional theory calculations, a radiolysis-based mechanism for the irradiation-induced oxygen vacancy introduction is developed, including insights into favorable configurations of oxygen defects. These systematic studies represent an important step forward in bringing few-layer MoO3 and MoO3- x into the 2D family, as well as highlight the promise of MoO3- x as a functional, tunable electronic material

    Quasi-Two-Dimensional Heterostructures (KM1 – xTe)(LaTe3) (M = Mn and Zn) with Charge Density Waves

    Get PDF
    Layered heterostructure materials with two different functional building blocks can teach us about emergent physical properties and phenomena arising from interactions between the layers. We report intergrowth compounds KLaM1 – xTe4 (M = Mn and Zn; x ≈ 0.35) featuring two chemically distinct alternating layers [LaTe3] and [KM1 – xTe]. Their crystal structures are incommensurate, determined by single X-ray diffraction for the Mn compound and a transmission electron microscope study for the Zn compound. KLaMn1 – xTe4 crystallizes in the orthorhombic superspace group Pmnm(01/2γ)s00 with lattice parameters a = 4.4815(3) Å, b = 21.6649(16) Å, and c = 4.5220(3) Å. It exhibits charge density wave order at room temperature with a modulation wave vector q = 1/2b* + 0.3478c* originating from electronic instability of Te-square nets in [LaTe3] layers. The Mn analog exhibits a cluster spin glass behavior with spin freezing temperature Tf ≈ 5 K attributed to disordered Mn vacancies and competing magnetic interactions in the [Mn1 – xTe] layers. The Zn analog also has charge density wave order at room temperature with a similar q-vector having the c* component ∼0.346 confirmed by selected-area electron diffraction. Electron transfer from [KM1 – xTe] to [LaTe3] layers exists in KLaM1 – xTe4, leading to an enhanced electronic specific heat coefficient. The resistivities of KLaM1 – xTe4 (M = Mn and Zn) exhibit metallic behavior at high temperatures and an upturn at low temperatures, suggesting partial localization of carriers in the [LaTe3] layers with some degree of disorder associated with the M atom vacancies in the [M1 – xTe] layers

    Iterative Phase Retrieval Algorithms for Scanning Transmission Electron Microscopy

    Full text link
    Scanning transmission electron microscopy (STEM) has been extensively used for imaging complex materials down to atomic resolution. The most commonly employed STEM imaging modality of annular dark field produces easily-interpretable contrast, but is dose-inefficient and produces little to no contrast for light elements and weakly-scattering samples. An alternative is to use phase contrast STEM imaging, enabled by high speed detectors able to record full images of a diffracted STEM probe over a grid of scan positions. Phase contrast imaging in STEM is highly dose-efficient, able to measure the structure of beam-sensitive materials and even biological samples. Here, we comprehensively describe the theoretical background, algorithmic implementation details, and perform both simulated and experimental tests for three iterative phase retrieval STEM methods: focused-probe differential phase contrast, defocused-probe parallax imaging, and a generalized ptychographic gradient descent method implemented in two and three dimensions. We discuss the strengths and weaknesses of each of these approaches using a consistent framework to allow for easier comparison. This presentation of STEM phase retrieval methods will make these methods more approachable, reproducible and more readily adoptable for many classes of samples.Comment: 25 pages, 11 figures, 1 tabl

    Two Band Model Interpretation of the p to n Transition in Ternary Tetradymite Topological Insulators

    Full text link
    The requirement for large bulk resistivity in topological insulators has led to the design of complex ternary and quaternary phases with balanced donor and acceptor levels. A common feature of the optimized phases is that they lie close to the p to n transition. The tetradymite Bi2Te3_xSex system exhibits minimum bulk conductance at the ordered composition Bi2Te2Se. By combining local and integral measurements of the density of states, we find that the point of minimum electrical conductivity at x=1.0 where carriers change from hole-like to electron-like is characterized by conductivity of the mixed type. Our experimental findings, which are interpreted within the framework of a two band model for the different carrier types, indicate that the mixed state originates from different type of native defects that strongly compensate at the crossover point

    Ultralow Thermal Conductivity, Multiband Electronic Structure and High Thermoelectric Figure of Merit in TlCuSe

    Get PDF
    The entanglement of lattice thermal conductivity, electrical conductivity, and Seebeck coefficient complicates the process of optimizing thermoelectric performance in most thermoelectric materials. Semiconductors with ultralow lattice thermal conductivities and high power factors at the same time are scarce but fundamentally interesting and practically important for energy conversion. Herein, an intrinsic p-type semiconductor TlCuSe that has an intrinsically ultralow thermal conductivity (0.25 W m−1 K−1), a high power factor (11.6 µW cm−1 K−2), and a high figure of merit, ZT (1.9) at 643 K is described. The weak chemical bonds, originating from the filled antibonding orbitals p-d* within the edge-sharing CuSe4 tetrahedra and long TlSe bonds in the PbClF-type structure, in conjunction with the large atomic mass of Tl lead to an ultralow sound velocity. Strong anharmonicity, coming from Tl+ lone-pair electrons, boosts phonon–phonon scattering rates and further suppresses lattice thermal conductivity. The multiband character of the valence band structure contributing to power factor enhancement benefits from the lone-pair electrons of Tl+ as well, which modify the orbital character of the valence bands, and pushes the valence band maximum off the Γ-point, increasing the band degeneracy. The results provide new insight on the rational design of thermoelectric materials

    Transmission Through Carbon Nanotubes With Polyhedral Caps

    Full text link
    We study electron transport between capped carbon nanotubes and a substrate, and relate the transmission probability to the local density of states in the cap. Our results show that the transmission probability mimics the behavior of the density of states at all energies except those that correspond to localized states in the cap. Close proximity of a substrate causes hybridization of the localized state. As a result, new transmission paths open from the substrate to nanotube continuum states via the localized states in the cap. Interference between various transmission paths gives rise to antiresonances in the transmission probability, with the minimum transmission equal to zero at energies of the localized states. Defects in the nanotube that are placed close to the cap cause resonances in the transmission probability, instead of antiresonances, near the localized energy levels. Depending on the spatial position of defects, these resonant states are capable of carrying a large current. These results are relevant to carbon nanotube based studies of molecular electronics and probe tip applications
    • …
    corecore