1,595 research outputs found

    Laudatores Temporis Acti, or Why Cosmology is Alive and Well - A Reply to Disney

    Full text link
    A recent criticism of cosmological methodology and achievements by Disney (2000) is assessed. Some historical and epistemological fallacies in the said article have been highlighted. It is shown that---both empirically and epistemologically---modern cosmology lies on sounder foundations than it is portrayed. A brief historical account demonstrates that this form of unsatisfaction with cosmology has had a long tradition, and rather meagre results in the course of the XX century.Comment: 11 pages, no figures; a criticism of astro-ph/0009020; Gen. Rel. Grav., accepted for publicatio

    Dynamical diffraction in sinusoidal potentials: uniform approximations for Mathieu functions

    Get PDF
    Eigenvalues and eigenfunctions of Mathieu's equation are found in the short wavelength limit using a uniform approximation (method of comparison with a `known' equation having the same classical turning point structure) applied in Fourier space. The uniform approximation used here relies upon the fact that by passing into Fourier space the Mathieu equation can be mapped onto the simpler problem of a double well potential. The resulting eigenfunctions (Bloch waves), which are uniformly valid for all angles, are then used to describe the semiclassical scattering of waves by potentials varying sinusoidally in one direction. In such situations, for instance in the diffraction of atoms by gratings made of light, it is common to make the Raman-Nath approximation which ignores the motion of the atoms inside the grating. When using the eigenfunctions no such approximation is made so that the dynamical diffraction regime (long interaction time) can be explored.Comment: 36 pages, 16 figures. This updated version includes important references to existing work on uniform approximations, such as Olver's method applied to the modified Mathieu equation. It is emphasised that the paper presented here pertains to Fourier space uniform approximation

    Test of a Jastrow-type wavefunction for a trapped few-body system in one dimension

    Full text link
    For a system with interacting quantum mechanical particles in a one-dimensional harmonic oscillator, a trial wavefunction with simple structure based on the solution of the corresponding two-particle system is suggested and tested numerically. With the inclusion of a scaling parameter for the distance between particles, at least for the very small systems tested here the ansatz gives a very good estimate of the ground state energy, with the error being of the order of ~1% of the gap to the first excited state

    Inhibition of Tendon Cell Proliferation and Matrix Glycosaminoglycan Synthesis by Non-Steroidal Anti-Inflammatory Drugs in vitro

    Get PDF
    The purpose of this study was to investigate the effects of some commonly used non-steroidal anti-inflammatory drugs (NSAIDs) on human tendon. Explants of human digital flexor and patella tendons were cultured in medium containing pharmacological concentrations of NSAIDs. Cell proliferation was measured by incorporation of 3H-thymidine and glycosaminoglycan synthesis was measured by incorporation of 35S-Sulphate. Diclofenac and aceclofenac had no significant effect either on tendon cell proliferation or glycosaminoglycan synthesis. Indomethacin and naproxen inhibited cell proliferation in patella tendons and inhibited glycosaminoglycan synthesis in both digital flexor and patella tendons. If applicable to the in vivo situation, these NSAIDs should be used with caution in the treatment of pain after tendon injury and surgery

    Extended Sequence Typing of Campylobacter spp., United Kingdom

    Get PDF
    Supplementing Campylobacter spp. multilocus sequence typing with nucleotide sequence typing of 3 antigen genes increased the discriminatory index achieved from 0.975 to 0.992 among 620 clinical isolates from Oxfordshire, United Kingdom. This enhanced typing scheme enabled identification of clusters and retained data required for long-range epidemiologic comparisons of isolates

    A hybrid embedded cohesive element method for predicting matrix cracking in composites

    Get PDF
    The complex architecture of many fibre-reinforced composites makes the generation of finite element meshes a labour-intensive process. The embedded element method, which allows the matrix and fibre reinforcement to be meshed separately, offers a computationally efficient approach to reduce the time and cost of meshing. In this paper we present a new approach of introducing cohesive elements into the matrix domain to enable the prediction of matrix cracking using the embedded element method. To validate this approach, experiments were carried out using a modified Double Cantilever Beam with ply drops, with the results being compared with model predictions. Crack deflection was observed at the ply drop region, due to the differences in stiffness, strength and toughness at the bi-material interface. The new modelling technique yields accurate predictions of the failure process in composites, including fracture loads and crack deflection path

    Computation of inflationary cosmological perturbations in chaotic inflationary scenarios using the phase-integral method

    Full text link
    The phase-integral approximation devised by Fr\"oman and Fr\"oman, is used for computing cosmological perturbations in the quadratic chaotic inflationary model. The phase-integral formulas for the scalar and tensor power spectra are explicitly obtained up to fifth order of the phase-integral approximation. We show that, the phase integral gives a very good approximation for the shape of the power spectra associated with scalar and tensor perturbations as well as the spectral indices. We find that the accuracy of the phase-integral approximation compares favorably with the numerical results and those obtained using the slow-roll and uniform approximation methods.Comment: 21 pages, RevTex, to appear in Phys. Rev

    Quenched Spin Tunneling and Diabolical Points in Magnetic Molecules: II. Asymmetric Configurations

    Full text link
    The perfect quenching of spin tunneling first predicted for a model with biaxial symmetry, and recently observed in the magnetic molecule Fe_8, is further studied using the discrete phase integral (or Wentzel-Kramers-Brillouin) method. The analysis of the previous paper is extended to the case where the magnetic field has both hard and easy components, so that the Hamiltonian has no obvious symmetry. Herring's formula is now inapplicable, so the problem is solved by finding the wavefunction and using connection formulas at every turning point. A general formula for the energy surface in the vicinity of the diabolo is obtained in this way. This formula gives the tunneling apmplitude between two wells unrelated by symmetry in terms of a small number of action integrals, and appears to be generally valid, even for problems where the recursion contains more than five terms. Explicit results are obtained for the diabolical points in the model for Fe_8. These results exactly parallel the experimental observations. It is found that the leading semiclassical results for the diabolical points appear to be exact, and the points themselves lie on a perfect centered rectangular lattice in the magnetic field space. A variety of evidence in favor of this perfect lattice hypothesis is presented.Comment: Revtex; 4 ps figures; follow up to cond-mat/000311

    Oscillatory Tunnel Splittings in Spin Systems: A Discrete Wentzel-Kramers-Brillouin Approach

    Full text link
    Certain spin Hamiltonians that give rise to tunnel splittings that are viewed in terms of interfering instanton trajectories, are restudied using a discrete WKB method, that is more elementary, and also yields wavefunctions and preexponential factors for the splittings. A novel turning point inside the classically forbidden region is analysed, and a general formula is obtained for the splittings. The result is appled to the \Fe8 system. A previous result for the oscillation of the ground state splitting with external magnetic field is extended to higher levels.Comment: RevTex, one ps figur
    corecore