18 research outputs found

    Early pyloric stenosis: a case control study

    Get PDF
    Pyloric stenosis (PS) is rare in the first 2 weeks of life, often leading to delays in diagnosis and treatment. We conducted a case control study to delineate the characteristics of patients with early PS (EPS). In addition, we tested the hypothesis that patients with EPS present with a smaller pylorus than older patients. A database of all patients presenting with PS to a children’s hospital over a 5-year period (2002–2006) was obtained. Each patient admitted during the first 2 weeks of life (subject) was matched to a patient admitted after 4 weeks of age (control), with the same gender, electrolyte status, and treating surgeon. A single pediatric radiologist, blinded to patient age, reviewed all available ultrasounds retrospectively. Demographic, clinical, diagnostic, therapeutic, and outcome data were compared. During the study period, 278 pyloromyotomies were performed for PS. Sixteen patients (5.8%) presented with EPS between 2 and 14 days of life. EPS patients had a higher prevalence of positive family history (31 vs. 0%, P = 0.043), and breast milk feeding (75 vs. 31%, P = 0.045). Sonographic measurements showed a pylorus that was of significantly less length (17.1 ± 0.6 vs. 20.5 ± 0.9 mm, P = 0.006) and muscle thickness (3.5 ± 0.2 vs. 4.9 ± 0.2 mm, P < 0.001) in patients with EPS. Hospital stay was significantly longer for EPS patients (4.3 ± 0.9 vs. 2.0 ± 0.1 days, P = 0.19) Babies presenting with EPS are more likely to be breast fed and to have a positive family history. EPS is associated with a longer hospital stay. Use of sonographic diagnostic measurements specific to this age group may prevent delays in diagnosis and treatment, and improve outcomes

    Sulla tendenza ad un limite di una successione di variabili casuali

    No full text

    Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs

    No full text
    Duchenne muscular dystrophy remains an untreatable genetic disease that severely limits motility and life expectancy in affected children. The only animal model specifically reproducing the alterations in the dystrophin gene and the full spectrum of human pathology is the golden retriever dog model. Affected animals present a single mutation in intron 6, resulting in complete absence of the dystrophin protein, and early and severe muscle degeneration with nearly complete loss of motility and walking ability. Death usually occurs at about 1 year of age as a result of failure of respiratory muscles. Here we report that intra-arterial delivery of wild-type canine mesoangioblasts (vessel-associated stem cells) results in an extensive recovery of dystrophin expression, normal muscle morphology and function (confirmed by measurement of contraction force on single fibres). The outcome is a remarkable clinical amelioration and preservation of active motility. These data qualify mesoangioblasts as candidates for future stem cell therapy for Duchenne patients
    corecore