11 research outputs found

    Folia ethnographica : supplementum ad Acta Musei Moraviae, Scientiae sociales

    Get PDF
    Titanium dioxide/single-walled carbon nanotube TiO2/SWNT composites were prepared for photocatalytic applications. Thecomposites were characterized using UV-visible and Raman spectroscopy, zeta-potential measurements, cyclic voltammetrycoupled with a photoreactor, scanning electron microscopy, and transmission electron microscopy coupled with energy dispersiveX-ray spectroscopy. The photocatalytic activity of TiO2 and the TiO2/SWNT composite was investigated using the photo-oxidationof methanol in sulfuric acid as supporting electrolyte. The results indicate that the TiO2/SWNT composite enhances the photocatalyticactivity compared to TiO2 alone. Electrochemical studies of the TiO2/SWNT composite were also carried out in varioussupporting electrolytes and the presence of SWNTs was shown to increase the current achieved in voltammetric measurements

    Direct growth of carbon nanotubes onto titanium dioxide nanoparticles.

    No full text
    Multi-wall carbon nanotubes (MWNTs) were successfully deposited on a TiO2 nanoparticle film via thermal chemical vapour deposition (CVD) using iron(III) as the catalyst, which was loaded into the titanium isopropoxide precursor solution. The properties of the TiO2/MWNTs nanocomposite was characterized using Raman spectroscopy, scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDX), 4-point probe conductivity measurements and cyclic voltammetry. Preliminary investigations on this TiO2/MWNTs nanocomposite as an anode material for Li-ion batteries shows a high reversible capacity of 268 mAh g(-1) with improved cycling stability compared with a mechanically blended composite

    Direct growth of carbon nanotubes onto titanium dioxide nanoparticles

    No full text
    Multi-wall carbon nanotubes (MWNTs) were successfully deposited on a TiO2 nanoparticle film via thermal chemical vapour deposition (CVD) using iron(III) as the catalyst, which was loaded into the titanium isopropoxide precursor solution. The properties of the TiO2/MWNTs nanocomposite was characterized using Raman spectroscopy, scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDX), 4-point probe conductivity measurements and cyclic voltammetry. Preliminary investigations on this TiO2/MWNTs nanocomposite as an anode material for Li-ion batteries shows a high reversible capacity of 268 mAh g(-1) with improved cycling stability compared with a mechanically blended composite
    corecore