521 research outputs found
Comparison of quantum mechanical and classical trajectory calculations of cross sections for ion-atom impact ionization of negative - and positive -ions for heavy ion fusion applications
Stripping cross sections in nitrogen have been calculated using the classical
trajectory approximation and the Born approximation of quantum mechanics for
the outer shell electrons of 3.2GeV I and Cs ions. A large
difference in cross section, up to a factor of six, calculated in quantum
mechanics and classical mechanics, has been obtained. Because at such high
velocities the Born approximation is well validated, the classical trajectory
approach fails to correctly predict the stripping cross sections at high
energies for electron orbitals with low ionization potential.Comment: submitted to Phys. Rev.
Velocity-selective sublevel resonance of atoms with an array of current-carrying wires
Resonance transitions between the Zeeman sublevels of optically-polarized Rb
atoms traveling through a spatially periodic magnetic field are investigated in
a radio-frequency (rf) range of sub-MHz. The atomic motion induces the
resonance when the Zeeman splitting is equal to the frequency at which the
moving atoms feel the magnetic field oscillating. Additional temporal
oscillation of the spatially periodic field splits a motion-induced resonance
peak into two by an amount of this oscillation frequency. At higher oscillation
frequencies, it is more suitable to consider that the resonance is mainly
driven by the temporal field oscillation, with its velocity-dependence or
Doppler shift caused by the atomic motion through the periodic field. A
theoretical description of motion-induced resonance is also given, with
emphasis on the translational energy change associated with the internal
transition.Comment: 7 pages, 3 figures, final versio
Ionization in fast atom-atom collisions: The influence and scaling behavior of electron-electron and electron-nucleus interactions
We report cross sections for ionization of He coincident with electron loss from He, Li, C, O, and Ne projectiles. For He, Li, C, and O projectiles, the cross sections were measured directly, while the Ne cross sections were obtained by transforming results for He projectiles colliding with Ne. We find that, at energies of about 100–500 keV/u, neutral projectiles can ionize a He target almost as effectively as a charged projectile. The contribution to ionization due to electron-electron interactions is found to scale with the number of available projectile electrons. Comparing ionization by the bound electrons on projectiles to ionization by free electrons, we find that the cross sections for ionization by bound electrons are systematically smaller than those for free electrons
Recommended from our members
Measurement of electromagnetic cross sections in heavy ion interactions and its consequences for luminosity lifetimes in ion colliders
The limitation of the luminosity lifetime in high energy heavy ion colliders like RHIC or LHC operating in ion mode is set by the very large cross section of beam - beam interactions. One of the dominant processes at relativistic energies is electron capture from pair production in the strong electromagnetic field provided by the high Z of the ions. The capture cross sections for Pb82+ interacting with a number of light and heavy solid targets have been measured using one of the high energy resolution 158 GeV/nucleon beams at CERN. Gas targets Ar, Kr and Xe have also been used. The results, together with results on electromagnetic dissociation, are discussed in terms of beam lifetimes for RHIC and LHC using extrapolations of the measurements to the corresponding collider energies
- …
