90 research outputs found

    N2O, NO, N2, and CO2 emissions from tropical savanna and grassland of Northern Australia: an incubation experiment with intact soil cores

    Get PDF
    Strong seasonal variability of hygric and thermal soil conditions are a defining environmental feature in northern Australia. However, how such changes affect the soil-atmosphere exchange of nitrous oxide (N2O), nitric oxide (NO) and dinitrogen (N2) is still not well explored. By incubating intact soil cores from four sites (three savanna, one pasture) under controlled soil temperatures (ST) and soil moisture (SM) we investigated the release of the trace gas fluxes of N2O, NO and carbon dioxide (CO2). Furthermore, the release of N2 due to denitrification was measured using the helium gas flow soil core technique. Under dry pre-incubation conditions NO and N2O emissions were very low (<7.0 ± 5.0 müg NO-N m-2 h-1; <0.0 ± 1.4 müg N2O-N m-2 h-1) or in the case of N2O, even a net soil uptake was observed. Substantial NO (max: 306.5 müg N m-2 h-1) and relatively small N2O pulse emissions (max: 5.8 ± 5.0 &müg N m-2 h-1) were recorded following soil wetting, but these pulses were short lived, lasting only up to 3 days. The total atmospheric loss of nitrogen was generally dominated by N2 emissions (82.4-99.3% of total N lost), although NO emissions contributed almost 43.2% to the total atmospheric nitrogen loss at 50% SM and 30 °C ST incubation settings (the contribution of N2 at these soil conditions was only 53.2%). N2O emissions were systematically higher for 3 of 12 sample locations, which indicates substantial spatial variability at site level, but on average soils acted as weak N2O sources or even sinks. By using a conservative upscale approach we estimate total annual emissions from savanna soils to average 0.12 kg N ha-1 yr-1 (N2O), 0.68 kg N ha-1 yr-1 (NO) and 6.65 kg N ha-1 yr-1 (N2). The analysis of long-term SM and ST records makes it clear that extreme soil saturation that can lead to high N2O and N2 emissions only occurs a few days per year and thus has little impact on the annual total. The potential contribution of nitrogen released due to pulse events compared to the total annual emissions was found to be of importance for NO emissions (contribution to total: 5-22%), but not for N2O emissions. Our results indicate that the total gaseous release of nitrogen from these soils is low and clearly dominated by loss in the form of inert nitrogen. Effects of seasonally varying soil temperature and moisture were detected, but were found to be low due to the small amounts of available nitrogen in the soils (total nitrogen <0.1%)

    From fibrous plant residues to mineral-associated organic carbon – the fate of organic matter in Arctic permafrost soils

    Get PDF
    Permafrost-affected soils of the Arctic account for 70 % or 727 Pg of the soil organic carbon (C) stored in the northern circumpolar permafrost region and therefore play a major role in the global C cycle. Most studies on the budgeting of C storage and the quality of soil organic matter (OM; SOM) in the northern circumpolar region focus on bulk soils. Thus, although there is a plethora of assumptions regarding differences in terms of C turnover or stability, little knowledge is available on the mechanisms stabilizing organic C in Arctic soils besides impaired decomposition due to low temperatures. To gain such knowledge, we investigated soils from Samoylov Island in the Lena River delta with respect to the composition and distribution of organic C among differently stabilized SOM fractions. The soils were fractionated according to density and particle size to obtain differently stabilized SOM fractions differing in chemical composition and thus bioavailability. To better understand the chemical alterations from plant-derived organic particles in these soils rich in fibrous plant residues to mineral-associated SOM, we analyzed the elemental, isotopic and chemical composition of particulate OM (POM) and clay-sized mineral-associated OM (MAOM). We demonstrate that the SOM fractions that contribute with about 17 kg C m−3^{-3} for more than 60 % of the C stock are highly bioavailable and that most of this labile C can be assumed to be prone to mineralization under warming conditions. Thus, the amount of relatively stable, small occluded POM and clay-sized MAOM that currently accounts with about 10 kg C m−3^{-3} for about 40 % of the C stock will most probably be crucial for the quantity of C protected from mineralization in these Arctic soils in a warmer future. Using δ15^{15}N as a proxy for nitrogen (N) balances indicated an important role of N inputs by biological N fixation, while gaseous N losses appeared less important. However, this could change, as with about 0.4 kg N m−3^{-3} one third of the N is present in bioavailable SOM fractions, which could lead to increases in mineral N cycling and associated N losses under global warming. Our results highlight the vulnerability of SOM in Arctic permafrost-affected soils under rising temperatures, potentially leading to unparalleled greenhouse gas emissions from these soils

    Dinitrogen emissions: an overlooked key component of the N balance of montane grasslands

    Get PDF
    While emissions of nitric oxide (NO), ammonia (NH₃) and nitrous oxide (N₂O) from grassland soils have been increasingly well constrained, soil dinitrogen (N₂) emissions are poorly understood. However, N₂ losses might dominate total gaseous nitrogen (N) losses. Knowledge on N losses is key for the development of climate-adapted management that balances agronomic and environmental needs. Hence, we quantified all gaseous N losses from a montane grassland in Southern Germany both for ambient climatic conditions and for a climate change treatment (+ 2°C MAT, - 300 mm MAP). Monthly measurements of soil N₂ emissions of intact soil cores revealed that those exceeded by far soil N₂O emissions and averaged at 350 ± 101 (ambient climate) and 738 ± 197 lg N m¯²h¯¹ (climate change). Because these measurements did not allow to quantify emission peaks after fertilization, an additional laboratory experiment was deployed to quantify the response of NH₃, NO, N₂O, and N₂ emissions in sub daily temporal resolution to a typical slurry fertilization event (51 kg N ha¯¹). Our results revealed that total N gas losses amounted to roughly half of applied slurry-N. Surprisingly, N₂ but not NH₃ dominated fertilizer N losses, with N₂ emissions accounting for 16–21 kg or 31–42% of the applied slurry-N, while NH₃ volatilization (3.5 kg), N2O (0.2–0.5 kg) and NO losses (0–0.2 kg) were of minor importance. Though constraining annual N₂ loss remained uncertain due to high spatiotemporal variability of fluxes, we show that N₂ losses are a so far overlooked key component of the N balance in montane grasslands, which needs to be considered for developing improved grassland management strategies targeted at increasing N use efficiency

    Biotic and abiotic controls on carbon storage in aggregates in calcareous alpine and prealpine grassland soils

    Get PDF
    Alpine and prealpine grasslands provide various ecosystem services and are hotspots for the storage of soil organic C (SOC) in Central Europe. Yet, information about aggregate-related SOC storage and its controlling factors in alpine and prealpine grassland soils is limited. In this study, the SOC distribution according to the aggregate size classes large macroaggregates (> 2000 μm), small macroaggregates (250–2000 μm), microaggregates (63–250 μm), and silt-/clay-sized particles (< 63 μm) was studied in grassland soils along an elevation gradient in the Northern Limestone Alps of Germany. This was accompanied by an analysis of earthworm abundance and biomass according to different ecological niches. The SOC and N stocks increased with elevation and were associated with relatively high proportions of water-stable macroaggregates due to high contents of exchangeable Ca2+^{2+} and Mg2+^{2+}. At lower elevations, earthworms appeared to act as catalyzers for a higher microaggregate formation. Thus, SOC stabilization by aggregate formation in the studied soils is a result of a joined interaction of organic matter and Ca2+^{2+} as binding agents for soil aggregates (higher elevations), and the earthworms that act as promoters of aggregate formation through the secretion of biogenic carbonates (low elevation). Our study highlights the importance of aggregate-related factors as potential indices to evaluate the SOC storage potential in other mountainous grassland soils

    High application rates of biochar to mitigate N2O emissions from a N-fertilized tropical soil under warming conditions.

    Get PDF
    Biochar application has been suggested as a strategy to decrease nitrous oxide emissions from agricultural soils while increasing soil C stocks, especially in tropical regions. Climate change, specifically increasing temperatures, will affect soil environmental conditions and thereby directly influence soil N2O fluxes

    The ScaleX campaign: scale-crossing land-surface and boundary layer processes in the TERENO-preAlpine observatory

    Get PDF
    Augmenting long-term ecosystem-atmosphere observations with multidisciplinary intensive campaigns aims at closing gaps in spatial and temporal scales of observation for energy- and biogeochemical cycling, and at stimulating collaborative research. ScaleX is a collaborative measurement campaign, co-located with a long-term environmental observatory of the German TERENO (TERrestrial ENvironmental Observatories) network in mountainous terrain of the Bavarian Prealps, Germany. The aims of both TERENO and ScaleX include the measurement and modeling of land-surface atmosphere interactions of energy, water, and greenhouse gases. ScaleX is motivated by the recognition that long-term intensive observational research over years or decades must be based on well-proven, mostly automated measurement systems, concentrated on a small number of locations

    East Coast Fever Caused by Theileria parva Is Characterized by Macrophage Activation Associated with Vasculitis and Respiratory Failure

    Get PDF
    Respiratory failure and death in East Coast Fever (ECF), a clinical syndrome of African cattle caused by the apicomplexan parasite Theileria parva, has historically been attributed to pulmonary infiltration by infected lymphocytes. However, immunohistochemical staining of tissue from T. parva infected cattle revealed large numbers of CD3- and CD20-negative intralesional mononuclear cells. Due to this finding, we hypothesized that macrophages play an important role in Theileria parva disease pathogenesis. Data presented here demonstrates that terminal ECF in both Holstein and Boran cattle is largely due to multisystemic histiocytic responses and resultant tissue damage. Furthermore, the combination of these histologic changes with the clinical findings, including lymphadenopathy, prolonged pyrexia, multi-lineage leukopenia, and thrombocytopenia is consistent with macrophage activation syndrome. All animals that succumbed to infection exhibited lymphohistiocytic vasculitis of small to medium caliber blood and lymphatic vessels. In pulmonary, lymphoid, splenic and hepatic tissues from Holstein cattle, the majority of intralesional macrophages were positive for CD163, and often expressed large amounts of IL-17. These data define a terminal ECF pathogenesis in which parasite-driven lymphoproliferation leads to secondary systemic macrophage activation syndrome, mononuclear vasculitis, pulmonary edema, respiratory failure and death. The accompanying macrophage phenotype defined by CD163 and IL-17 is presented in the context of this pathogenesis
    • …
    corecore