490 research outputs found
Exact and Approximate Unitary 2-Designs: Constructions and Applications
We consider an extension of the concept of spherical t-designs to the unitary group in order to develop a unified framework for analyzing the resource requirements of randomized quantum algorithms. We show that certain protocols based on twirling require a unitary 2-design. We describe an efficient construction for an exact unitary 2-design based on the Clifford group, and then develop a method for generating an epsilon-approximate unitary 2-design that requires only O(n log(1/epsilon)) gates, where n is the number of qubits and epsilon is an appropriate measure of precision. These results lead to a protocol with exponential resource savings over existing experimental methods for estimating the characteristic fidelities of physical quantum processes
Black holes as mirrors: quantum information in random subsystems
We study information retrieval from evaporating black holes, assuming that
the internal dynamics of a black hole is unitary and rapidly mixing, and
assuming that the retriever has unlimited control over the emitted Hawking
radiation. If the evaporation of the black hole has already proceeded past the
"half-way" point, where half of the initial entropy has been radiated away,
then additional quantum information deposited in the black hole is revealed in
the Hawking radiation very rapidly. Information deposited prior to the half-way
point remains concealed until the half-way point, and then emerges quickly.
These conclusions hold because typical local quantum circuits are efficient
encoders for quantum error-correcting codes that nearly achieve the capacity of
the quantum erasure channel. Our estimate of a black hole's information
retention time, based on speculative dynamical assumptions, is just barely
compatible with the black hole complementarity hypothesis.Comment: 18 pages, 2 figures. (v2): discussion of decoding complexity
clarifie
Randomized benchmarking of single and multi-qubit control in liquid-state NMR quantum information processing
Being able to quantify the level of coherent control in a proposed device
implementing a quantum information processor (QIP) is an important task for
both comparing different devices and assessing a device's prospects with
regards to achieving fault-tolerant quantum control. We implement in a
liquid-state nuclear magnetic resonance QIP the randomized benchmarking
protocol presented by Knill et al (PRA 77: 012307 (2008)). We report an error
per randomized pulse of with a
single qubit QIP and show an experimentally relevant error model where the
randomized benchmarking gives a signature fidelity decay which is not possible
to interpret as a single error per gate. We explore and experimentally
investigate multi-qubit extensions of this protocol and report an average error
rate for one and two qubit gates of for a three
qubit QIP. We estimate that these error rates are still not decoherence limited
and thus can be improved with modifications to the control hardware and
software.Comment: 10 pages, 6 figures, submitted versio
Quantum non-malleability and authentication
In encryption, non-malleability is a highly desirable property: it ensures
that adversaries cannot manipulate the plaintext by acting on the ciphertext.
Ambainis, Bouda and Winter gave a definition of non-malleability for the
encryption of quantum data. In this work, we show that this definition is too
weak, as it allows adversaries to "inject" plaintexts of their choice into the
ciphertext. We give a new definition of quantum non-malleability which resolves
this problem. Our definition is expressed in terms of entropic quantities,
considers stronger adversaries, and does not assume secrecy. Rather, we prove
that quantum non-malleability implies secrecy; this is in stark contrast to the
classical setting, where the two properties are completely independent. For
unitary schemes, our notion of non-malleability is equivalent to encryption
with a two-design (and hence also to the definition of Ambainis et al.). Our
techniques also yield new results regarding the closely-related task of quantum
authentication. We show that "total authentication" (a notion recently proposed
by Garg, Yuen and Zhandry) can be satisfied with two-designs, a significant
improvement over the eight-design construction of Garg et al. We also show
that, under a mild adaptation of the rejection procedure, both total
authentication and our notion of non-malleability yield quantum authentication
as defined by Dupuis, Nielsen and Salvail.Comment: 20+13 pages, one figure. v2: published version plus extra material.
v3: references added and update
Underreporting of meningococcal disease incidence in the Netherlands: results from a capture-recapture analysis based on three registration sources with correction for false positive diagnoses.
In order to come to a reliable evaluation of the effectiveness of the chosen vaccination policy regarding meningococcal disease, the completeness of registrations on meningococcal disease in the Netherlands was estimated with the capture-recapture method. Data over 1993-1998 were collected from (A) mandatory notifications (n = 2926); (B) hospital registration (n = 3968); (C) laboratory surveillance (n = 3484). As the standard capture-recapture method does not take into account false positive diagnoses, we developed a model to adjust for the lack of specificity of our sources. We estimated that 1363 cases were not registered in any of the three sources in the period of study. The completeness of the three sources was therefore estimated at 49% for source A, 67% for source B and 58% for source C. After adjustment for false positive diagnoses, the completeness of source A, B, and C was estimated as 52%, 70% and 62%, respectively. The capture-recapture methods offer an attractive approach to estimate the completeness of surveillance sources and hence contribute to a more accurate estimate of the disease burden under study. However, the method does not account for higher-order interactions or presence of false positive diagnoses. Being aware of these limitations, the capture-recapture method still elucidates the (in)completeness of sources and gives a rough estimate of this (in)completeness. This makes a more accurate monitoring of disease incidence possible and hence attributes to a more reliable foundation for the design and evaluation of health interventions such as vaccination programs
Quantum authentication with key recycling
We show that a family of quantum authentication protocols introduced in
[Barnum et al., FOCS 2002] can be used to construct a secure quantum channel
and additionally recycle all of the secret key if the message is successfully
authenticated, and recycle part of the key if tampering is detected. We give a
full security proof that constructs the secure channel given only insecure
noisy channels and a shared secret key. We also prove that the number of
recycled key bits is optimal for this family of protocols, i.e., there exists
an adversarial strategy to obtain all non-recycled bits. Previous works
recycled less key and only gave partial security proofs, since they did not
consider all possible distinguishers (environments) that may be used to
distinguish the real setting from the ideal secure quantum channel and secret
key resource.Comment: 38+17 pages, 13 figures. v2: constructed ideal secure channel and
secret key resource have been slightly redefined; also added a proof in the
appendix for quantum authentication without key recycling that has better
parameters and only requires weak purity testing code
Europe under Pressure
The past years were characterized by a massive influx of migrants crossing the Union’s external borders seeking asylum. Illegal migration, exploitation of social welfare systems, foreign infiltration and the instrumentalization of religion condensed in terror attacks determine today’s changed attitude towards foreigners, refugees and migrants and therefore strongly impact the current European political agenda. Angelika C. Dankert describes the development of the EU and provides information on events that led to the creation and the spill-over of the Arab Spring. Roots and origin of Jihadist ideology as well as goals of religiously motivated terrorism are illustrated and European standards on morals and values are critically questioned. Through investigation of current matters in the field of law, security and interculturality, this book reveals the biggest geopolitical challenge of the 21st century
Tight informationally complete quantum measurements
We introduce a class of informationally complete positive-operator-valued
measures which are, in analogy with a tight frame, "as close as possible" to
orthonormal bases for the space of quantum states. These measures are
distinguished by an exceptionally simple state-reconstruction formula which
allows "painless" quantum state tomography. Complete sets of mutually unbiased
bases and symmetric informationally complete positive-operator-valued measures
are both members of this class, the latter being the unique minimal rank-one
members. Recast as ensembles of pure quantum states, the rank-one members are
in fact equivalent to weighted 2-designs in complex projective space. These
measures are shown to be optimal for quantum cloning and linear quantum state
tomography.Comment: 20 pages. Final versio
Efficient and feasible state tomography of quantum many-body systems
We present a novel method to perform quantum state tomography for
many-particle systems which are particularly suitable for estimating states in
lattice systems such as of ultra-cold atoms in optical lattices. We show that
the need for measuring a tomographically complete set of observables can be
overcome by letting the state evolve under some suitably chosen random circuits
followed by the measurement of a single observable. We generalize known results
about the approximation of unitary 2-designs, i.e., certain classes of random
unitary matrices, by random quantum circuits and connect our findings to the
theory of quantum compressed sensing. We show that for ultra-cold atoms in
optical lattices established techniques like optical super-lattices, laser
speckles, and time-of-flight measurements are sufficient to perform fully
certified, assumption-free tomography. Combining our approach with tensor
network methods - in particular the theory of matrix-product states - we
identify situations where the effort of reconstruction is even constant in the
number of lattice sites, allowing in principle to perform tomography on
large-scale systems readily available in present experiments.Comment: 10 pages, 3 figures, minor corrections, discussion added, emphasizing
that no single-site addressing is needed at any stage of the scheme when
implemented in optical lattice system
Decoupling with unitary approximate two-designs
Consider a bipartite system, of which one subsystem, A, undergoes a physical
evolution separated from the other subsystem, R. One may ask under which
conditions this evolution destroys all initial correlations between the
subsystems A and R, i.e. decouples the subsystems. A quantitative answer to
this question is provided by decoupling theorems, which have been developed
recently in the area of quantum information theory. This paper builds on
preceding work, which shows that decoupling is achieved if the evolution on A
consists of a typical unitary, chosen with respect to the Haar measure,
followed by a process that adds sufficient decoherence. Here, we prove a
generalized decoupling theorem for the case where the unitary is chosen from an
approximate two-design. A main implication of this result is that decoupling is
physical, in the sense that it occurs already for short sequences of random
two-body interactions, which can be modeled as efficient circuits. Our
decoupling result is independent of the dimension of the R system, which shows
that approximate 2-designs are appropriate for decoupling even if the dimension
of this system is large.Comment: Published versio
- …
