2,982 research outputs found
Self-Assembly on a Cylinder: A Model System for Understanding the Constraint of Commensurability
A crystal lattice, when confined to the surface of a cylinder, must have a
periodic structure that is commensurate with the cylinder circumference. This
constraint can frustrate the system, leading to oblique crystal lattices or to
structures with a chiral seam known as a "line slip" phase, neither of which
are stable for isotropic particles in equilibrium on flat surfaces. In this
study, we use molecular dynamics simulations to find the steady-state structure
of spherical particles with short-range repulsion and long-range attraction far
below the melting temperature. We vary the range of attraction using the
Lennard-Jones and Morse potentials and find that a shorter-range attraction
favors the line-slip. We develop a simple model based only on geometry and bond
energy to predict when the crystal or line-slip phases should appear, and find
reasonable agreement with the simulations. The simplicity of this model allows
us to understand the influence of the commensurability constraint, an
understanding that might be extended into the more general problem of
self-assembling particles in strongly confined spaces.Comment: 12 pages, 9 figures. Submitted for publication, 201
Charge density and conductivity of disordered Berry-Mondragon graphene nanoribbons
We consider gated graphene nanoribbons subject to Berry-Mondragon boundary
conditions in the presence of weak impurities. Using field--theoretical
methods, we calculate the density of charge carriers (and, thus, the quantum
capacitance) as well as the optical and DC conductivities at zero temperature.
We discuss in detail their dependence on the gate (chemical) potential, and
reveal a non-linear behaviour induced by the quantization of the transversal
momentum.Comment: 17 pages, version accepted for publication in EPJ
Thermodynamics of conformal fields in topologically non-trivial space-time backgrounds
We analyze the finite temperature behaviour of massless conformally coupled
scalar fields in homogeneous lens spaces . High and low
temperature expansions are explicitly computed and the behavior of
thermodynamic quantities under thermal duality is scrutinized. The analysis of
the entropy of the different lens spaces in the high-temperature limit points
out the appearance of a topological nonextensive entropy, besides the standard
Stefan-Boltzmann extensive term. The remaining terms are exponentially
suppressed by the temperature. The topological entropy appears as a subleading
correction to the free energy that can be obtained from the determinant of the
lens space conformal Laplacian operator. In the low-temperature limit the
leading term in the free energy is the Casimir energy and there is no trace of
any power correction in any lens space. In fact, the remaining corrections are
always exponentially suppressed by the inverse of the temperature. The duality
between the results of both expansions is further analyzed in the paper.Comment: 21 pages, 2 figure
Defects and boundary layers in non-Euclidean plates
We investigate the behavior of non-Euclidean plates with constant negative
Gaussian curvature using the F\"oppl-von K\'arm\'an reduced theory of
elasticity. Motivated by recent experimental results, we focus on annuli with a
periodic profile. We prove rigorous upper and lower bounds for the elastic
energy that scales like the thickness squared. In particular we show that are
only two types of global minimizers -- deformations that remain flat and saddle
shaped deformations with isolated regions of stretching near the edge of the
annulus. We also show that there exist local minimizers with a periodic profile
that have additional boundary layers near their lines of inflection. These
additional boundary layers are a new phenomenon in thin elastic sheets and are
necessary to regularize jump discontinuities in the azimuthal curvature across
lines of inflection. We rigorously derive scaling laws for the width of these
boundary layers as a function of the thickness of the sheet
Elliptic Phases: A Study of the Nonlinear Elasticity of Twist-Grain Boundaries
We develop an explicit and tractable representation of a twist-grain-boundary
phase of a smectic A liquid crystal. This allows us to calculate the
interaction energy between grain boundaries and the relative contributions from
the bending and compression deformations. We discuss the special stability of
the 90 degree grain boundaries and discuss the relation of this structure to
the Schwarz D surface.Comment: 4 pages, 2 figure
Bjerrum pairing correlations at charged interfaces
Electrostatic correlations play a fundamental role in aqueous solutions. In
this letter, we identify transverse and lateral correlations as two mutually
exclusive regimes. We show that the transverse regime leads to binding by
generalization of Bjerrum pair formation theory, yielding binding constants
from first-principle statistical-mechanical calculations. We compare our
theoretical predictions with experiments on charged membranes and Langmuir
monolayers and find good agreement. We contrast our approach with existing
theories in the strong-coupling limit and on charged modulated interfaces, and
discuss different scenarios that lead to charge reversal and equal-sign
attraction by macro-ions.Comment: 7 pages, 4 figure
Rifts in Spreading Wax Layers
We report experimental results on the rift formation between two freezing wax
plates. The plates were pulled apart with constant velocity, while floating on
the melt, in a way akin to the tectonic plates of the earth's crust. At slow
spreading rates, a rift, initially perpendicular to the spreading direction,
was found to be stable, while above a critical spreading rate a "spiky" rift
with fracture zones almost parallel to the spreading direction developed. At
yet higher spreading rates a second transition from the spiky rift to a zig-zag
pattern occurred. In this regime the rift can be characterized by a single
angle which was found to be dependent on the spreading rate. We show that the
oblique spreading angles agree with a simple geometrical model. The coarsening
of the zig-zag pattern over time and the three-dimensional structure of the
solidified crust are also discussed.Comment: 4 pages, Postscript fil
The digital data processing concepts of the LOFT mission
The Large Observatory for X-ray Timing (LOFT) is one of the five mission
candidates that were considered by ESA for an M3 mission (with a launch
opportunity in 2022 - 2024). LOFT features two instruments: the Large Area
Detector (LAD) and the Wide Field Monitor (WFM). The LAD is a 10 m 2 -class
instrument with approximately 15 times the collecting area of the largest
timing mission so far (RXTE) for the first time combined with CCD-class
spectral resolution. The WFM will continuously monitor the sky and recognise
changes in source states, detect transient and bursting phenomena and will
allow the mission to respond to this. Observing the brightest X-ray sources
with the effective area of the LAD leads to enormous data rates that need to be
processed on several levels, filtered and compressed in real-time already on
board. The WFM data processing on the other hand puts rather low constraints on
the data rate but requires algorithms to find the photon interaction location
on the detector and then to deconvolve the detector image in order to obtain
the sky coordinates of observed transient sources. In the following, we want to
give an overview of the data handling concepts that were developed during the
study phase.Comment: Proc. SPIE 9144, Space Telescopes and Instrumentation 2014:
Ultraviolet to Gamma Ray, 91446
- …
