19,455 research outputs found

    Probabilistic structural analysis methods of hot engine structures

    Get PDF
    Development of probabilistic structural analysis methods for hot engine structures at Lewis Research Center is presented. Three elements of the research program are: (1) composite load spectra methodology; (2) probabilistic structural analysis methodology; and (3) probabilistic structural analysis application. Recent progress includes: (1) quantification of the effects of uncertainties for several variables on high pressure fuel turbopump (HPFT) turbine blade temperature, pressure, and torque of the space shuttle main engine (SSME); (2) the evaluation of the cumulative distribution function for various structural response variables based on assumed uncertainties in primitive structural variables; and (3) evaluation of the failure probability. Collectively, the results demonstrate that the structural durability of hot engine structural components can be effectively evaluated in a formal probabilistic/reliability framework

    Thermoviscoplastic nonlinear constitutive relationships for structural analysis of high temperature metal matrix composites

    Get PDF
    A set of thermoviscoplastic nonlinear constitutive relationships (1VP-NCR) is presented. The set was developed for application to high temperature metal matrix composites (HT-MMC) and is applicable to thermal and mechanical properties. Formulation of the TVP-NCR is based at the micromechanics level. The TVP-NCR are of simple form and readily integrated into nonlinear composite structural analysis. It is shown that the set of TVP-NCR is computationally effective. The set directly predicts complex materials behavior at all levels of the composite simulation, from the constituent materials, through the several levels of composite mechanics, and up to the global response of complex HT-MMC structural components

    A unique set of micromechanics equations for high temperature metal matrix composites

    Get PDF
    A unique set of micromechanic equations is presented for high temperature metal matrix composites. The set includes expressions to predict mechanical properties, thermal properties and constituent microstresses for the unidirectional fiber reinforced ply. The equations are derived based on a mechanics of materials formulation assuming a square array unit cell model of a single fiber, surrounding matrix and an interphase to account for the chemical reaction which commonly occurs between fiber and matrix. A three-dimensional finite element analysis was used to perform a preliminary validation of the equations. Excellent agreement between properties predicted using the micromechanics equations and properties simulated by the finite element analyses are demonstrated. Implementation of the micromechanics equations as part of an integrated computational capability for nonlinear structural analysis of high temperature multilayered fiber composites is illustrated

    Nonlinear structural analysis for fiber-reinforced superalloy turbine blades

    Get PDF
    A computational capability for predicting the nonlinear thermomechanical structural response of fiber-reinforced superalloy (FRS) turbine blades is described. This capability is embedded in a special purpose computer code (COBSTRAN) developed at the NASA Lewis Research Center. Special features of this computational capability include accounting for: fiber/matrix reaction, nonlinear and anisotropic material behavior, complex stress distribution due to local and global heterogeneity, and residual stresses due to initial fabrication and/or inelastic behavior during subsequent missions. Numerical results are presented from analyses of a hypothetical FRS turbine blade subjected to a fabrication process and subsequent mission cycle. The results demonstrate the capabilities of this computational tool to; predict local stress/strain response and capture trends of local nonlinear and anisotropic material behavior, relate the effects of this local behavior to the global response of a multilayered fiber-composite turbine blade, and trace material history from fabrication through successive missions

    Evaluation of semiconductor devices for Electric and Hybrid Vehicle (EHV) ac-drive applications, volume 1

    Get PDF
    The results of evaluation of power semiconductor devices for electric hybrid vehicle ac drive applications are summarized. Three types of power devices are evaluated in the effort: high power bipolar or Darlington transistors, power MOSFETs, and asymmetric silicon control rectifiers (ASCR). The Bipolar transistors, including discrete device and Darlington devices, range from 100 A to 400 A and from 400 V to 900 V. These devices are currently used as key switching elements inverters for ac motor drive applications. Power MOSFETs, on the other hand, are much smaller in current rating. For the 400 V device, the current rating is limited to 25 A. For the main drive of an electric vehicle, device paralleling is normally needed to achieve practical power level. For other electric vehicle (EV) related applications such as battery charger circuit, however, MOSFET is advantageous to other devices because of drive circuit simplicity and high frequency capability. Asymmetrical SCR is basically a SCR device and needs commutation circuit for turn off. However, the device poses several advantages, i.e., low conduction drop and low cost

    Land use, associated eel production, and abundance of fish and crayfish in streams in Waikato, New Zealand

    Get PDF
    The density and biomass of fish and crayfish, and the production of eels, was compared among streams in native forest, exotic forest, and pasture. Populations were estimated by multiple-pass electroshocking at 11 sites in hill-country streams in the Waikato region, North Island. Three sites were in native forest, four in exotic forest, and four in pasture. Length of stream sampled at each site was 46-94 m (41-246 m2 in area), and catchment areas up stream of the sites ranged from 0.44 to 2.01 km2. A total of 487 fish were caught. The species were longfinned and shortfinned eels, banded kokopu, Cran's and redfinned bullies, and common smelt. Eels were the most abundant fish in all three land-use types, and shortfinned eels were more abundant at pastoral sites (mean density 1.11 fish m-2) than longfinned eels (mean density 0.129 fish m-2). Banded kokopu were present only at forested sites. Mean fish densities were greater at pastoral sites (1.55 fish m-2) than under either native forest (0.130 fish m-2) or exotic forest (0.229 fish m-2). Mean fish biomass was also greater at pastoral sites (89.7 g m-2) than under native forest (12.8 g m-2) or exotic forest (19.3 g m-2). Longfinned eels made a greater contribution to the fish biomass at all sites than did shortfinned eels. Densities of crayfish were high (0.46-5.40 crayfish m-2), but were not significantly different between land-use types. Crayfish biomass ranged from 1.79 to 11.2 g m-2. Total eel production was greater at pastoral sites (mean 17.9 g m-2 year-1) than at forest sites (mean 2.39 g m-2 year-1)

    Heavily Obscured Quasar Host Galaxies at z~2 are Disks, Not Major Mergers

    Full text link
    We explore the nature of heavily obscured quasar host galaxies at z~2 using deep Hubble Space Telescope WFC3/IR imaging of 28 Dust Obscured Galaxies (DOGs) to investigate the role of major mergers in driving black hole growth. The high levels of obscuration of the quasars selected for this study act as a natural coronagraph, blocking the quasar light and allowing a clear view of the underlying host galaxy. The sample of heavily obscured quasars represents a significant fraction of the cosmic mass accretion on supermassive black holes as the quasars have inferred bolometric luminosities around the break of the quasar luminosity function. We find that only a small fraction (4%, at most 11-25%) of the quasar host galaxies are major mergers. Fits to their surface brightness profiles indicate that 90% of the host galaxies are either disk dominated, or have a significant disk. This disk-like host morphology, and the corresponding weakness of bulges, is evidence against major mergers and suggests that secular processes are the predominant driver of massive black hole growth. Finally, we suggest that the co-incidence of mergers and AGN activity is luminosity dependent, with only the most luminous quasars being triggered mostly by major mergers.Comment: 5 pages, 4 figures, 1 table. To appear as a Letter in MNRA

    Metal matrix composite micromechanics: In-situ behavior influence on composite properties

    Get PDF
    Recent efforts in computational mechanics methods for simulating the nonlinear behavior of metal matrix composites have culminated in the implementation of the Metal Matrix Composite Analyzer (METCAN) computer code. In METCAN material nonlinearity is treated at the constituent (fiber, matrix, and interphase) level where the current material model describes a time-temperature-stress dependency of the constituent properties in a material behavior space. The composite properties are synthesized from the constituent instantaneous properties by virtue of composite micromechanics and macromechanics models. The behavior of metal matrix composites depends on fabrication process variables, in situ fiber and matrix properties, bonding between the fiber and matrix, and/or the properties of an interphase between the fiber and matrix. Specifically, the influence of in situ matrix strength and the interphase degradation on the unidirectional composite stress-strain behavior is examined. These types of studies provide insight into micromechanical behavior that may be helpful in resolving discrepancies between experimentally observed composite behavior and predicted response

    Computational simulation of high temperature metal matrix composites cyclic behavior

    Get PDF
    A procedure was developed and is described which can be used to computationally simulate the cyclic behavior of high temperature metal matrix composites (HTMMC) and its degradation effects on the structural response. This procedure consists of HTMMC mechanics coupled with a multifactor interaction constituent material relationship and with an incremental iterative nonlinear analysis. The procedure is implemented in a computer code that can be used to computationally simulate the thermomechanical behavior of HTMMC starting from the fabrication process and proceeding through thermomechanical cycling, accounting for the interface/interphase region. Results show that combined thermal/mechanical cycling, the interphase, and in situ matrix properties have significant effects on the structural integrity of HTMMC
    corecore