1,363 research outputs found

    Chiral and Continuum Extrapolation of Partially-Quenched Lattice Results

    Full text link
    The vector meson mass is extracted from a large sample of partially quenched, two-flavor lattice QCD simulations. For the first time, discretisation, finite-volume and partial quenching artefacts are treated in a unified framework which is consistent with the low-energy behaviour of QCD. This analysis incorporates the leading infrared behaviour dictated by chiral effective field theory. As the two-pion decay channel cannot be described by a low-energy expansion alone, a highly-constrained model for the decay channel of the rho-meson is introduced. The latter is essential for extrapolating lattice results from the quark-mass regime where the rho is observed to be a physical bound state.Comment: 9 pages, 3 figures; revised version appearing in PL

    Chiral and Continuum Extrapolation of Partially-Quenched Hadron Masses

    Get PDF
    Using the finite-range regularisation (FRR) of chiral effective field theory, the chiral extrapolation formula for the vector meson mass is derived for the case of partially-quenched QCD. We re-analyse the dynamical fermion QCD data for the vector meson mass from the CP-PACS collaboration. A global fit, including finite lattice spacing effects, of all 16 of their ensembles is performed. We study the FRR method together with a naive polynomial approach and find excellent agreement ~1% with the experimental value of M_rho from the former approach. These results are extended to the case of the nucleon mass.Comment: 6 pages, Contribution to Lattice2005, PoS styl

    Noise properties of two single electron transistors coupled by a nanomechanical resonator

    Full text link
    We analyze the noise properties of two single electron transistors (SETs) coupled via a shared voltage gate consisting of a nanomechanical resonator. Working in the regime where the resonator can be treated as a classical system, we find that the SETs act on the resonator like two independent heat baths. The coupling to the resonator generates positive correlations in the currents flowing through each of the SETs as well as between the two currents. In the regime where the dynamics of the resonator is dominated by the back-action of the SETs, these positive correlations can lead to parametrically large enhancements of the low frequency current noise. These noise properties can be understood in terms of the effects on the SET currents of fluctuations in the state of a resonator in thermal equilibrium which persist for times of order the resonator damping time.Comment: Accepted for publication in Phys. Rev.

    Unified chiral analysis of the vector meson spectrum from lattice QCD

    Full text link
    The chiral extrapolation of the vector meson mass calculated in partially-quenched lattice simulations is investigated. The leading one-loop corrections to the vector meson mass are derived for partially-quenched QCD. A large sample of lattice results from the CP-PACS Collaboration is analysed, with explicit corrections for finite lattice spacing artifacts. To incorporate the effect of the opening decay channel as the chiral limit is approached, the extrapolation is studied using a necessary phenomenological extension of chiral effective field theory. This chiral analysis also provides a quantitative estimate of the leading finite volume corrections. It is found that the discretisation, finite-volume and partial quenching effects can all be very well described in this framework, producing an extrapolated value of M_\rho in excellent agreement with experiment. This procedure is also compared with extrapolations based on polynomial forms, where the results are much less enlightening.Comment: 30 pages, 13 fig

    Quantum trajectory phase transitions in the micromaser

    Full text link
    We study the dynamics of the single atom maser, or micromaser, by means of the recently introduced method of thermodynamics of quantum jump trajectories. We find that the dynamics of the micromaser displays multiple space-time phase transitions, i.e., phase transitions in ensembles of quantum jump trajectories. This rich dynamical phase structure becomes apparent when trajectories are classified by dynamical observables that quantify dynamical activity, such as the number of atoms that have changed state while traversing the cavity. The space-time transitions can be either first-order or continuous, and are controlled not just by standard parameters of the micromaser but also by non-equilibrium "counting" fields. We discuss how the dynamical phase behavior relates to the better known stationary state properties of the micromaser.Comment: 7 pages, 5 figure

    Dissipation due to tunneling two-level systems in gold nanomechanical resonators

    Full text link
    We present measurements of the dissipation and frequency shift in nanomechanical gold resonators at temperatures down to 10 mK. The resonators were fabricated as doubly-clamped beams above a GaAs substrate and actuated magnetomotively. Measurements on beams with frequencies 7.95 MHz and 3.87 MHz revealed that from 30 mK to 500 mK the dissipation increases with temperature as T0.5T^{0.5}, with saturation occurring at higher temperatures. The relative frequency shift of the resonators increases logarithmically with temperature up to at least 400 mK. Similarities with the behavior of bulk amorphous solids suggest that the dissipation in our resonators is dominated by two-level systems

    Measuring mechanical motion with a single spin

    Get PDF
    We study theoretically the measurement of a mechanical oscillator using a single two level system as a detector. In a recent experiment, we used a single electronic spin associated with a nitrogen vacancy center in diamond to probe the thermal motion of a magnetized cantilever at room temperature {Kolkowitz et al., Science 335, 1603 (2012)}. Here, we present a detailed analysis of the sensitivity limits of this technique, as well as the possibility to measure the zero point motion of the oscillator. Further, we discuss the issue of measurement backaction in sequential measurements and find that although backaction heating can occur, it does not prohibit the detection of zero point motion. Throughout the paper we focus on the experimental implementation of a nitrogen vacancy center coupled to a magnetic cantilever; however, our results are applicable to a wide class of spin-oscillator systems. Implications for preparation of nonclassical states of a mechanical oscillator are also discussed.Comment: 17 pages, 6 figure

    Dynamical instabilities of a resonator driven by a superconducting single-electron transistor

    Full text link
    We investigate the dynamical instabilities of a resonator coupled to a superconducting single-electron transistor (SSET) tuned to the Josephson quasiparticle (JQP) resonance. Starting from the quantum master equation of the system, we use a standard semiclassical approximation to derive a closed set of mean field equations which describe the average dynamics of the resonator and SSET charge. Using amplitude and phase coordinates for the resonator and assuming that the amplitude changes much more slowly than the phase, we explore the instabilities which arise in the resonator dynamics as a function of coupling to the SSET, detuning from the JQP resonance and the resonator frequency. We find that the locations (in parameter space) and sizes of the limit cycle states predicted by the mean field equations agree well with numerical solutions of the full master equation for sufficiently weak SSET-resonator coupling. The mean field equations also give a good qualitative description of the set of dynamical transitions in the resonator state that occur as the coupling is progressively increased.Comment: 23 pages, 6 Figures, Accepted for NJ
    • …
    corecore