172 research outputs found

    A 2.4 GHz LoRa-Based Protocol for Communication and Energy Harvesting on Industry Machines

    Get PDF
    The fourth industrial revolution is paving the way for Industrial Internet of Things applications where large number of wireless nodes, equipped with sensors and actuators, monitor the production cycle of industrial goods. This paper proposes and analyses LoRaIN, a network architecture and MAC-layer protocol thought for on-demand monitoring of industrial machines. Our proprietary system is an energy-efficient, reliable and scalable solution, where the protocol is built on top of LoRa at 2.4 GHz. Indeed, the low-power characteristics of LoRa allow to reduce energy consumption, while Wireless Power Transfer is used to recharge batteries, avoiding periodic battery replacement. High reliability is obtained through the joint use of Frequency and Time Division Multiple Access. A dynamic LoRaIN scheduler manages the communication and recharging phases depending on the tasks assigned to the nodes, as well as the number of monitoring devices. Performance is measured in terms of network throughput, energy consumption and latency. Results demonstrate that the proposed solution is suitable for monitoring applications of industry machines

    Combined microbiological test to assess changes in an organic matrix used to avoid agricultural soil contamination, exposed to an insecticide

    Get PDF
    Combined microbiological test (Biolog Ecoplate, denaturing gradient gel electrophoresis (DGGE) and Real Time PCR (qPCR)) were developed to evaluate the impact of repeated diazinon (DZN) applications at high concentration (40 mg kg-1) on microbial communities in a microcosm simulating the organic matrix (straw (50%): peat (25%): soil (25%) vv-1) of an pesticide biopurification system (PBS). Moreover, pesticide dissipation was also evaluated. After three successive exposition of DZN, dissipation efficiency was high; achieved 87%, 93% and 96% after each application, respectively showing a clear accelerated dissipation of this pesticide in the organic matrix. The results obtained with Biolog Ecoplate showed that community level physiological profiles were no affected by the addition of DZN. On the other hand, molecular assays (DGGE and QPCR) demonstrated that the microbial structure (bacteria and fungi) remained relatively stable over time with high DZN doses compared to control. Therefore, the results of the present study, clearly, demonstrate the high dissipation capacity of this biomixture and highlight the microbiological robustness of this biological system.Fil: Tortella, G. R.. Universidad de la Frontera. Nucleo Cientifico y Tecnologico En Recursos Naturales (bioren-ufro). Departamento de Ciencias Quimicas y Recursos Naturales; ChileFil: Salgado, E.. Universidad de la Frontera. Nucleo Cientifico y Tecnológico En Recursos Naturales; ChileFil: Cuozzo, Sergio Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán. Planta Piloto de Procesos Industriales Microbiológicos (i); ArgentinaFil: Mella Herrera, R. A.. Universidad de la Frontera. Nucleo Cientifico y Tecnológico En Recursos Naturales; ChileFil: Parra, L.. Universidad de la Frontera. Núcleo Científico y Tecnológico en Recursos Naturales; ChileFil: Diez, M. C.. Universidad de la Frontera. Nucleo Cientifico y Tecnológico En Recursos Naturales; ChileFil: Rubilar, O.. Universidad de la Frontera. Nucleo Cientifico y Tecnológico En Recursos Naturales; Chil

    Inhibition of C5aR1 as a promising approach to treat taxane-induced neuropathy

    Get PDF
    : Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect of several antitumor agents resulting in progressive and often irreversible damage of peripheral nerves. In addition to their known anticancer effects, taxanes, including paclitaxel, can also induce peripheral neuropathy by activating microglia and astrocytes, which release pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin 1-beta (IL-1β), and chemokine (C-C motif) ligand 2 (CCL-2). All these events contribute to the maintenance of neuropathic or inflammatory response. Complement component 5a (C5a)/C5a receptor 1 (C5aR1) signaling was very recently shown to play a crucial role in paclitaxel-induced peripheral neuropathy. Our recent findings highlighted that taxanes have the previously unreported property of binding and activating C5aR1, and that C5aR1 inhibition by DF3966A is effective in preventing paclitaxel-induced peripheral neuropathy (PIPN) in animal models. Here, we investigated if C5aR1 inhibition maintains efficacy in reducing PIPN in a therapeutic setting. Furthermore, we characterized the role of C5aR1 activation by paclitaxel and the CIPN-associated activation of nod-like receptor (NLR) family pyrin domain containing 3 (NLRP3) inflammasome. Our results clearly show that administration of the C5aR1 inhibitor strongly reduced cold and mechanical allodynia in mice when given both during the onset of PIPN and when neuropathy is well established. C5aR1 activation by paclitaxel was found to be a key event in the induction of inflammatory factors in spinal cord, such as TNF-α, ionized calcium-binding adapter molecule 1 (Iba-1), and glial fibrillary acidic protein (GFAP). In addition, C5aR1 inhibition significantly mitigated paclitaxel-induced inflammation and inflammasome activation by reducing IL-1β and NLRP3 expression at both sciatic and dorsal root ganglia level, confirming the involvement of inflammasome in PIPN. Moreover, paclitaxel-induced upregulation of C5aR1 was significantly reduced by DF3966A treatment in central nervous system. Lastly, the antinociceptive effect of C5aR1 inhibition was confirmed in an in vitro model of sensory neurons in which we focused on receptor channels usually activated upon neuropathy. In conclusion, C5aR1 inhibition is proposed as a therapeutic option with the potential to exert long-term protective effect on PIPN-associated neuropathic pain and inflammation

    Oral sodium butyrate supplementation ameliorates paclitaxel-induced behavioral and intestinal dysfunction

    Get PDF
    Paclitaxel (PTX) is one of the most broadly used chemotherapeutic agents for the treatment of several tumor types including ovarian, breast, and non-small cell lung cancer. However, its use is limited by debilitating side effects, involving both gastrointestinal and behavioral dysfunctions. Due to growing evidence showing a link between impaired gut function and chemotherapy-associated behavioral changes, the aim of this study was to identify a novel therapeutic approach to manage PTX-induced gut and brain comorbidities. Mice were pre-treated with sodium butyrate (BuNa) for 30 days before receiving PTX. After 14 days, mice underwent to behavioral analysis and biochemical investigations of gut barrier integrity and microbiota composition. Paired evaluations of gut functions revealed that the treatment with BuNa restored PTX-induced altered gut barrier integrity, microbiota composition and food intake suggesting a gut-to-brain communication. The treatment with BuNa also ameliorated depressive- and anxiety-like behaviors induced by PTX in mice, and these effects were associated with neuroprotective and anti-inflammatory outcomes. These results propose that diet supplementation with this safe postbiotic might be considered when managing PTX-induced central side effects during cancer therapy

    Ketogal Safety Profile in Human Primary Colonic Epithelial Cells and in Mice

    Get PDF
    In our previous studies, a ketorolac–galactose conjugate (ketogal) showed prolonged anti-inflammatory and analgesic activity, causing less gastric ulcerogenic effect and renal toxicity than its parent drug ketorolac. In order to demonstrate the safer profile of ketogal compared to ketorolac, histopathological changes in the small intestine and liver using three staining techniques before and after repeated oral administration in mice with ketorolac or an equimolecular dose of its galactosylated prodrug ketogal were assessed. Cytotoxicity and oxidative stress parameters were evaluated and compared in ketorolac-and ketogal-treated Human Primary Colonic Epithelial cells at different concentrations and incubation times. Evidence of mitochondrial oxidative stress was found after ketorolac treatment; this was attributable to altered mitochondrial membrane depolarization and oxidative stress parameters. No mitochondrial damage was observed after ketogal treatment. In ketorolac-treated mice, severe subepithelial vacuolation and erosion with inflammatory infiltrates and edematous area in the intestinal tissues were noted, as well as alterations in sinusoidal spaces and hepatocytes with foamy cytoplasm. In contrast, treatment with ketogal provided a significant improvement in the morphology of both organs. The prodrug clearly demonstrated a safer profile than its parent drug both in vitro and ex vivo, confirming that ketogal is a strategic alternative to ketorolac

    Aplicación de soda en equipos de desarrollo de software científico-técnico

    Get PDF
    El presente trabajo aplica una modificación a la metodología Strategic Options Development and Analysis (SODA) en el campo de la mejora continua de procesos de software. La hipótesis de este trabajo es que los mapas conceptuales, como representación gráfica de los modelos cognitivos de los decisores, son una herramienta que puede ser utilizada en situaciones donde el problema tenga impacto potencial y no haya situaciones de conflicto preexistentes entre los decisores. Se presenta una experiencia en la que líderes técnicos y de gestión de equipos de software debían identificar y priorizar áreas de mejora siguiendo los lineamientos de SODA y Haciendo el Viaje. La elaboración de mapas cognitivos individuales fue remplazada por una dinámica para consensuar objetivos comunes y elicitar una visión compartida.Fil: Salamon, Alicia G. Instituto Universitario Aeronáutico. Facultad de Ingeniería; Argentina.Fil: Cuozzo, José D. Instituto Universitario Aeronáutico. Facultad de Ingeniería; Argentina.Fil: Patricio Maller, María A. Instituto Universitario Aeronáutico. Facultad de Ingeniería; Argentina.Fil: Boggio, Natalia C. Instituto Universitario Aeronáutico. Facultad de Ingeniería; Argentina.Fil: Mira, Sofía B. Instituto Universitario Aeronáutico. Facultad de Ingeniería; Argentina.Fil: Pérez, Francisco J. Coenda. Instituto Universitario Aeronáutico. Facultad de Ingeniería; Argentina.Otras Ingenierías y Tecnología

    Targeting gut dysbiosis against inflammation and impaired autophagy in Duchenne muscular dystrophy

    Get PDF
    Nothing is known about the potential implication of gut microbiota in skeletal muscle disorders. Here, we provide evidence that fecal microbiota composition along with circulating levels of short-chain fatty acids (SCFAs) and related metabolites are altered in the mdx mouse model of Duchenne muscular dystrophy (DMD) compared with healthy controls. Supplementation with sodium butyrate (NaB) in mdx mice rescued muscle strength and autophagy, and prevented inflammation associated with excessive endocannabinoid signaling at CB1 receptors to the same extent as deflazacort (DFZ), the standard palliative care for DMD. In LPS-stimulated C2C12 myoblasts, NaB reduces inflammation, promotes autophagy, and prevents dysregulation of microRNAs targeting the endocannabinoid CB1 receptor gene, in a manner depending on the activation of GPR109A and PPARγ receptors. In sum, we propose a novel disease-modifying approach in DMD that may have benefits also in other muscular dystrophies
    corecore