65 research outputs found

    Umatilla Virus Genome Sequencing and Phylogenetic Analysis: Identification of Stretch Lagoon Orbivirus as a New Member of the Umatilla virus Species

    Get PDF
    The genus Orbivirus, family Reoviridae, includes 22 species of viruses with genomes composed of ten segments of linear dsRNA that are transmitted between their vertebrate hosts by insects or ticks, or with no identified vectors. Full-genome sequence data are available for representative isolates of the insect borne mammalian orbiviruses (including bluetongue virus), as well as a tick borne avian orbivirus (Great Island virus). However, no sequence data are as yet available for the mosquito borne avian orbiviruses

    Epithelial Neutrophil-Activating Peptide (ENA-78), Acute Coronary Syndrome Prognosis, and Modulatory Effect of Statins

    Get PDF
    Endothelial inflammation with chemokine involvement contributes to acute coronary syndromes (ACS). We tested the hypothesis that variation in the chemokine gene CXCL5, which encodes epithelial neutrophil-activating peptide (ENA-78), is associated with ACS prognosis. We also investigated whether statin use, a potent modulator of inflammation, modifies CXCL5's association with outcomes and characterized the in vitro effect of atorvastatin on endothelial ENA-78 production. Using a prospective cohort of ACS patients (n = 704) the association of the CXCL5 −156 G>C polymorphism (rs352046) with 3-year all-cause mortality was estimated with hazard ratios (HR). Models were stratified by genotype and race. To characterize the influence of statins on this association, a statin*genotype interaction was tested. To validate ENA-78 as a statin target in inflammation typical of ACS, endothelial cells (HUVECs) were treated with IL-1β and atorvastatin with subsequent quantification of CXCL5 expression and ENA-78 protein concentrations. C/C genotype was associated with a 2.7-fold increase in 3-year all-cause mortality compared to G/G+G/C (95%CI 1.19–5.87; p = 0.017). Statins significantly reduced mortality in G/G individuals only (58% relative risk reduction; p = 0.0009). In HUVECs, atorvastatin dose-dependently decreased IL-1β-stimulated ENA-78 concentrations (p<0.0001). Drug effects persisted over 48 hours (p<0.01). CXCL5 genotype is associated with outcomes after ACS with potential statin modification of this effect. Atorvastatin lowered endothelial ENA-78 production during inflammation typical of ACS. These findings implicate CXCL5/ENA-78 in ACS and the statin response

    Interferon Production and Signaling Pathways Are Antagonized during Henipavirus Infection of Fruit Bat Cell Lines

    Get PDF
    Bats are natural reservoirs for a spectrum of infectious zoonotic diseases including the recently emerged henipaviruses (Hendra and Nipah viruses). Henipaviruses have been observed both naturally and experimentally to cause serious and often fatal disease in many different mammal species, including humans. Interestingly, infection of the flying fox with henipaviruses occurs in the absence of clinical disease. The extreme variation in the disease pattern between humans and bats has led to an investigation into the effects of henipavirus infection on the innate immune response in bat cell lines. We report that henipavirus infection does not result in the induction of interferon expression, and the viruses also inhibit interferon signaling. We also confirm that the interferon production and signaling block in bat cells is not due to differing viral protein expression levels between human and bat hosts. This information, in addition to the known lack of clinical signs in bats following henipavirus infection, suggests that bats control henipavirus infection by an as yet unidentified mechanism, not via the interferon response. This is the first report of henipavirus infection in bat cells specifically investigating aspects of the innate immune system

    The Influence of Meteorology on the Spread of Influenza: Survival Analysis of an Equine Influenza (A/H3N8) Outbreak

    Get PDF
    The influences of relative humidity and ambient temperature on the transmission of influenza A viruses have recently been established under controlled laboratory conditions. The interplay of meteorological factors during an actual influenza epidemic is less clear, and research into the contribution of wind to epidemic spread is scarce. By applying geostatistics and survival analysis to data from a large outbreak of equine influenza (A/H3N8), we quantified the association between hazard of infection and air temperature, relative humidity, rainfall, and wind velocity, whilst controlling for premises-level covariates. The pattern of disease spread in space and time was described using extraction mapping and instantaneous hazard curves. Meteorological conditions at each premises location were estimated by kriging daily meteorological data and analysed as time-lagged time-varying predictors using generalised Cox regression. Meteorological covariates time-lagged by three days were strongly associated with hazard of influenza infection, corresponding closely with the incubation period of equine influenza. Hazard of equine influenza infection was higher when relative humidity was <60% and lowest on days when daily maximum air temperature was 20–25°C. Wind speeds >30 km hour−1 from the direction of nearby infected premises were associated with increased hazard of infection. Through combining detailed influenza outbreak and meteorological data, we provide empirical evidence for the underlying environmental mechanisms that influenced the local spread of an outbreak of influenza A. Our analysis supports, and extends, the findings of studies into influenza A transmission conducted under laboratory conditions. The relationships described are of direct importance for managing disease risk during influenza outbreaks in horses, and more generally, advance our understanding of the transmission of influenza A viruses under field conditions

    Does a relationship between ankle brachial index and health status in patients with peripheral artery disease exist? A pilot study

    No full text
    Abstract not availableC. Labrosciano, P. Cowled, R. Fitridge, J. Beltram

    Combined triggering of dendritic cell receptors results in synergistic activation and potent cytotoxic immunity

    No full text
    Elimination of malignant cells and intracellular infections involves collaboration between CTLs and Th1 inflammation. Dendritic cells drive this response via costimulation and cytokines. We have defined key signals required for the exponential expansion of specific CD8 T cells in vivo in mice. Immunization with two or more TLR agonists, anti-CD40, IFN-γ, and surfactant were sufficient to drive unprecedented levels of CD8 response to peptide or protein Ag and highly polarized Th1 CD4 responses. CD40 signaling was required for CD8 expansion but could be provided by a concomitant CD4 Th response in place of anti-CD40. Triggering of these pathways activated migration and activation of myeloid and plasmacytoid dendritic cells and secretion of IL-12. Cross-presentation can thus be exploited to induce potent cytotoxic responses and long-term memory to peptide/protein Ags. When combined with a tumor-associated peptide from tyrosinase-related protein 2, our combined adjuvant approach effectively halted tumor growth in an in vivo melanoma model and was more effective than anti-CD40 and a single TLR agonist. Antitumor immunity was associated with long-lived effector memory CD8 cells specific for the naturally processed and presented tumor Ag, and tumor protection was partially but not entirely dependent on CD8 T cells. This flexible strategy is more effective than existing adjuvants and provides a technological platform for rapid vaccine development. Copyrigh

    Human osteosarcoma expresses specific ephrin profiles - Implications for tumorigenicity and prognosis

    No full text
    Copyright © 2002 American Cancer Society Published in Cancer, 2002; 95 (4):862-869 at www.interscience.wiley.comBACKGROUND: The molecular mechanisms underlying malignancy of osteosarcoma are unknown. It has been reported that eph receptor protein tyrosine kinases and their ligands, ephrins, are associated with increased tumorigenicity in patients with breast carcinoma and melanoma. The expression and role of eph/ephrins in human osteosarcoma has not yet been characterized. METHODS: Ephrin-A1, ephrin-A3, ephrin-A4, ephrin-A5, ephrin-B1, ephrin-B2, and ephrin-B3 mRNA expression was examined by reverse transcription polymerase chain reaction analysis in nine specimens of human osteosarcoma tissue and five human osteosarcoma cell lines. Ephrin-B1 protein expression was detected immunohistochemically in human osteosarcoma tissue. Clinicopathologic correlation was made between the osteosarcoma specimens and their ephrin expression profiles. RESULTS: Normal bone specimens, osteosarcoma tissue specimens, and osteosarcoma cell lines expressed a distinct mRNA profile of ephrin-A1, ephrin-A4, and ephrin-B2. A second mRNA profile that included ephrin-A3, ephrin-A5, and ephrin-B1 was expressed by a subset of tumors. The expression of ephrin-B1 was correlated with a poorer clinical prognosis. Ephrin-B1 protein was expressed by osteosarcoma cells and blood vessels. CONCLUSIONS: The results of this study suggest that ephrin-B1 expressed by osteosarcoma may be a poor prognostic marker through increased tumorigenicity.Antiopi Varelias, Simon A. Koblar, Prudence A. Cowled, Christopher D. Carter, Mark Claye

    Cloning, expression and antiviral activity of IFN gamma from the Australian fruit bat, Pteropus alecto

    No full text
    C1 - Journal Articles RefereedBats are natural reservoir hosts to a variety of viruses, many of which cause morbidity and mortality in other mammals. Currently there is a paucity of information regarding the nature of the immune response to viral infections in bats, partly due to a lack of appropriate bat specific reagents. IFNγ plays a key role in controlling viral replication and coordinating a response for long term control of viral infection. Here we describe the cloning and expression of IFNγ from the Australian flying fox, Pteropus alecto and the generation of mouse monoclonal and chicken egg yolk antibodies specific to bat IFNγ. Our results demonstrate that P. alecto IFNγ is conserved with IFNγ from other species and is induced in bat splenocytes following stimulation with T cell mitogens. P. alecto IFNγ has antiviral activity on Semliki forest virus in cell lines from P. alecto and the microbat, Tadarida brasiliensis. Additionally recombinant bat IFNγ was able to mitigate Hendra virus infection in P. alecto cells. These results provide the first evidence for an antiviral role for bat IFNγin vitro in addition to the application of important immunological reagents for further studies of bat antiviral immunity

    Molecular characterisation of Toll-like receptors in the black flying fox Pteropus alecto

    No full text
    Bats are believed to be reservoir hosts for a number of emerging and re-emerging viruses, many of which are responsible for illness and mortality in humans, livestock and other animals. In other vertebrates, early responses to viral infection involve engagement of Toll-like receptors (TLRs), which induce changes in gene expression collectively leading to an "antiviral state". In this study we report the cloning and bioinformatic analysis of a complete set of TLRs from the black flying fox Pteropus alecto, and perform quantitative tissue expression analysis of the nucleic acid-sensing TLRs 3, 7, 8 and 9. Full-length mRNA transcripts from TLRs homologous to human TLRs 1-10 were sequenced, as well as a nearly intact TLR13 pseudogene that was spliced and polyadenylated. This prototype data can now be used to design functional studies of the bat innate immune system

    Genetic architecture of gene expression in the chicken

    No full text
    Background: The annotation of many genomes is limited, with a large proportion of identified genes lacking functional assignments. The construction of gene co-expression networks is a powerful approach that presents away of integrating information from diverse gene expression datasets into a unified analysis which allows inferences to be drawn about the role of previously uncharacterised genes. Using this approach, we generated a condition-free gene co-expression network for the chicken using data from 1,043 publically available Affymetrix GeneChip Chicken Genome Arrays. This data was generated from a diverse range of experiments, including different tissues and experimental conditions. Our aim was to identify gene co-expression modules and generate a tool to facilitate exploration of the functional chicken genome. Results: Fifteen modules, containing between 24 and 473 genes, were identified in the condition-free network. Most of the modules showed strong functional enrichment for particular Gene Ontology categories. However, a few showed no enrichment. Transcription factor binding site enrichment was also noted. Conclusions: We have demonstrated that this chicken gene co-expression network is a useful tool in gene function prediction and the identification of putative novel transcription factors and binding sites. This work highlights the relevance of this methodology for functional prediction in poorly annotated genomes such as the chicken
    corecore