2,503 research outputs found

    Study of bonding methods for flip chip and beam leaded devices

    Get PDF
    The results are presented of a comprehensive study and evaluation for the bonding of flip chip and beam leaded devices onto hybrid microcircuit substrates used in high reliability space applications. The program included the evaluation of aluminum flip chips, solder (silver/tin) bump chips, gold beam leaded devices, and aluminum beam leaded devices

    NASA micromin computer Monthly progress letter, Jan. 1967

    Get PDF
    Microminiature circuit development for flight control computer

    Rotating black hole orbit functionals in the frequency domain

    Full text link
    In many astrophysical problems, it is important to understand the behavior of functions that come from rotating (Kerr) black hole orbits. It can be particularly useful to work with the frequency domain representation of those functions, in order to bring out their harmonic dependence upon the fundamental orbital frequencies of Kerr black holes. Although, as has recently been shown by W. Schmidt, such a frequency domain representation must exist, the coupled nature of a black hole orbit's rr and θ\theta motions makes it difficult to construct such a representation in practice. Combining Schmidt's description with a clever choice of timelike coordinate suggested by Y. Mino, we have developed a simple procedure that sidesteps this difficulty. One first Fourier expands all quantities using Mino's time coordinate λ\lambda. In particular, the observer's time tt is decomposed with λ\lambda. The frequency domain description is then built from the λ\lambda-Fourier expansion and the expansion of tt. We have found this procedure to be quite simple to implement, and to be applicable to a wide class of functionals. We test the procedure using a simple test function, and then apply it in a particularly interesting case, the Weyl curvature scalar ψ4\psi_4 used in black hole perturbation theory.Comment: 16 pages, 2 figures. Submitted to Phys Rev D. New version gives a vastly improved algorithm due to Drasco for computing the Fourier transforms. Drasco has been added as an author. Also fixed some references and exterminated a small herd of typos; final published versio

    A First Estimate Of The X-Ray Binary Frequency As A Function Of Star Cluster Mass In A Single Galactic System

    Full text link
    We use the previously-identified 15 infrared star-cluster counterparts to X-ray point sources in the interacting galaxies NGC 4038/4039 (the Antennae) to study the relationship between total cluster mass and X-ray binary number. This significant population of X-Ray/IR associations allows us to perform, for the first time, a statistical study of X-ray point sources and their environments. We define a quantity, \eta, relating the fraction of X-ray sources per unit mass as a function of cluster mass in the Antennae. We compute cluster mass by fitting spectral evolutionary models to K_s luminosity. Considering that this method depends on cluster age, we use four different age distributions to explore the effects of cluster age on the value of \eta and find it varies by less than a factor of four. We find a mean value of \eta for these different distributions of \eta = 1.7 x 10^-8 M_\sun^-1 with \sigma_\eta = 1.2 x 10^-8 M_\sun^-1. Performing a \chi^2 test, we demonstrate \eta could exhibit a positive slope, but that it depends on the assumed distribution in cluster ages. While the estimated uncertainties in \eta are factors of a few, we believe this is the first estimate made of this quantity to ``order of magnitude'' accuracy. We also compare our findings to theoretical models of open and globular cluster evolution, incorporating the X-ray binary fraction per cluster.Comment: 20 pages, 6 figures, accepted by Ap

    Far-ultraviolet imaging of the Hubble Deep Field-North: Star formation in normal galaxies at z < 1

    Get PDF
    We present far-ultraviolet (FUV) imaging of the Hubble Deep Field-North (HDF-N) taken with the Solar Blind Channel of the Advanced Camera for Surveys (ACS SBC) and the FUV MAMA detector of the Space Telescope Imaging Spectrograph onboard the Hubble Space Telescope. The full WFPC2 deep field has been observed at 1600 Å. We detect 134 galaxies and one star down to a limit of FUV_(AB) ~ 29. All sources have counterparts in the WFPC2 image. Redshifts (spectroscopic or photometric) for the detected sources are in the range 0 < z < 1. We find that the FUV galaxy number counts are higher than those reported by GALEX, which we attribute at least in part to cosmic variance in the small HDF-N field of view. Six of the 13 Chandra sources at z < 0.85 in the HDF-N are detected in the FUV, and those are consistent with starbursts rather than active galactic nuclei. Cross-correlating with Spitzer sources in the field, we find that the FUV detections show general agreement with the expected L_(IR)/L_(UV) versus β relationship. We infer star formation rates (SFRs), corrected for extinction using the UV slope, and find a median value of 0.3 M_☉ yr^(-1) for FUV-detected galaxies, with 75% of detected sources having SFR < 1 M_☉ yr^(-1). Examining the morphological distribution of sources, we find that about half of all FUV-detected sources are identified as spiral galaxies. Half of morphologically selected spheroid galaxies at z < 0.85 are detected in the FUV, suggesting that such sources have had significant ongoing star formation in the epoch since z ~ 1

    Toward a Clean Sample of Ultra-Luminous X-ray Sources

    Full text link
    CONTEXT. Observational follow-up programmes for the characterization of ultra-luminous X-ray sources (ULXs) require the construction of clean samples of such sources in which the contamination by foreground/background sources is minimum. AIMS. In this article we calculate the degree of foreground/background contaminants among the ULX sample candidates in the Colbert & Ptak (2002) catalogue and compare these computations with available spectroscopical identifications. METHODS. We use statistics based on known densities of X-ray sources and AGN/QSOs selected in the optical. The analysis is done individually for each parent galaxy. The existing identifications of the optical counterparts are compiled from the literature. RESULTS. More than a half of the ULXs, within twice the distance of the major axis of the 25 mag/arcsec2^2 isophote from RC3 nearby galaxies and with X-ray luminosities LXL_X[2-10 keV] 1039\ge 10^{39} erg/s, are expected to be high redshift background QSOs. A list of 25 objects (clean sample) confirmed to be real ULXs or to have a low probability of being contaminant foreground/background objects is provided.Comment: 9 pages, accepted in A&

    Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes

    Get PDF
    Hydrogen adsorption on crystalline ropes of carbon single-walled nanotubes (SWNT) was found to exceed 8 wt.%, which is the highest capacity of any carbon material. Hydrogen is first adsorbed on the outer surfaces of the crystalline ropes. At pressures higher than about 40 bar at 80 K, however, a phase transition occurs where there is a separation of the individual SWNTs, and hydrogen is physisorbed on their exposed surfaces. The pressure of this phase transition provides a tube-tube cohesive energy for much of the material of 5 meV/C atom. This small cohesive energy is affected strongly by the quality of crystalline order in the ropes

    Spitzer infrared spectrometer 16μm observations of the GOODS fields

    Get PDF
    We present Spitzer 16μm imaging of the Great Observatories Origins Deep Survey (GOODS) fields. We survey 150 arcmin^2 in each of the two GOODS fields (North and South), to an average 3σ depth of 40 and 65 μJy, respectively. We detect ~1300 sources in both fields combined. We validate the photometry using the 3–24μm spectral energy distribution of stars in the fields compared to Spitzer spectroscopic templates. Comparison with ISOCAM and AKARI observations in the same fields shows reasonable agreement, though the uncertainties are large. We provide a catalog of photometry, with sources cross-correlated with available Spitzer, Chandra, and Hubble Space Telescope data. Galaxy number counts show good agreement with previous results from ISOCAM and AKARI with improved uncertainties. We examine the 16–24μm flux ratio and find that for most sources it lies within the expected locus for starbursts and infrared luminous galaxies. A color cut of S_(16)/S_(24) > 1.4 selects mostly sources which lie at 1.1 < z < 1.6, where the 24μm passband contains both the redshifted 9.7 μm silicate absorption and the minimum between polycyclic aromatic hydrocarbon emission peaks. We measure the integrated galaxy light of 16μm sources and find a lower limit on the galaxy contribution to the extragalactic background light at this wavelength to be 2.2 ± 0.2 nW m^(−2) sr^(−1)

    University Faculty and Their Knowledge & Acceptance of Biological Evolution

    Get PDF
    Misconceptions about biological evolution specifically and the nature of science in general are pervasive in our society and culture. The view that biological evolution explains life’s origin(s) and that hypotheses become theories, which then become laws are just two examples of commonly held misconceptions. These misconceptions are reinforced in the media, in people’s personal lives, and in some unfortunate cases in the science classroom. Misconceptions regarding the nature of science (NOS) have been shown to be related to understanding and acceptance of biological evolution. Previous work has looked at several factors that are related to an individual’s understanding of biological evolution, acceptance of biological evolution, and his/her understanding of the NOS. The study presented here investigated understanding and acceptance of biological evolution among a highly educated population: university faculty. To investigate these variables we surveyed 309 faculty at a major public Midwestern university. The questions at the core of our investigation covered differences across and between faculty disciplines, what influence theistic position or other demographic responses had, and what model best described the relationships detected. Our results show that knowledge of biological evolution and acceptance of biological evolution are positively correlated for university faculty. Higher knowledge of biological evolution positively correlates with higher acceptance of biological evolution across the entire population of university faculty. This positive correlation is also present if the population is broken down into distinct theistic views (creationist and non-creationist viewpoints). Greater knowledge of biological evolution also positively correlates with greater acceptance of biological evolution across different levels of science education. We also found that of the factors we examined, theistic view has the strongest relationship with knowledge and acceptance of biological evolution. These results add support to the idea that a person’s theistic view is a driving force behind his or her resistance to understanding and accepting biological evolution. We also conclude that our results support the idea that effective science instruction can have a positive effect on both understanding and acceptance of biological evolution and that understanding and acceptance are closely tied variables
    corecore