383 research outputs found
The Thermal Response of Downhill Skis
AbstractThe temperatures in downhill skies were measured with thermocouples to investigate the heat generation associated with the sliding of skis on snow. In these tests we investigated the effects on ski temperature of the ambient snow temperature, snow type, speed, load and thermal conductivity. A significant temperature rise at the base of the ski was found at the onset of motion in all runs. The temperature rise increased for heavier loads and at lower ambient temperatures. Some ski runs lasted long enough to observe a steady-state temperature at the ski base; it increased with ambient temperature. Longitudinal and transverse temperature variations occurred and were sensitive to snow hardness and skiing technique.We also investigated heat flow through the cross-section of the ski with a finite-element model to determine the effects of ski structure on heat retention at the base. We found that the thermal characteristics as determined by the structure of the ski had a significant effect on the temperature at the ski base. At lower temperatures we expect that friction will be greater in skis which have a large aluminum plate across their base. Steel edges have a lesser effect.</jats:p
The Impossibility Of Secure Two-Party Classical Computation
We present attacks that show that unconditionally secure two-party classical
computation is impossible for many classes of function. Our analysis applies to
both quantum and relativistic protocols. We illustrate our results by showing
the impossibility of oblivious transfer.Comment: 10 page
Variable Bias Coin Tossing
Alice is a charismatic quantum cryptographer who believes her parties are
unmissable; Bob is a (relatively) glamorous string theorist who believes he is
an indispensable guest. To prevent possibly traumatic collisions of
self-perception and reality, their social code requires that decisions about
invitation or acceptance be made via a cryptographically secure variable bias
coin toss (VBCT). This generates a shared random bit by the toss of a coin
whose bias is secretly chosen, within a stipulated range, by one of the
parties; the other party learns only the random bit. Thus one party can
secretly influence the outcome, while both can save face by blaming any
negative decisions on bad luck.
We describe here some cryptographic VBCT protocols whose security is
guaranteed by quantum theory and the impossibility of superluminal signalling,
setting our results in the context of a general discussion of secure two-party
computation. We also briefly discuss other cryptographic applications of VBCT.Comment: 14 pages, minor correction
A Two-Threshold Model for Scaling Laws of Non-Interacting Snow Avalanches
The sizes of snow slab failure that trigger snow avalanches are power-law
distributed. Such a power-law probability distribution function has also been
proposed to characterize different landslide types. In order to understand this
scaling for gravity driven systems, we introduce a two-threshold 2-d cellular
automaton, in which failure occurs irreversibly. Taking snow slab avalanches as
a model system, we find that the sizes of the largest avalanches just
preceeding the lattice system breakdown are power law distributed. By tuning
the maximum value of the ratio of the two failure thresholds our model
reproduces the range of power law exponents observed for land-, rock- or snow
avalanches. We suggest this control parameter represents the material cohesion
anisotropy.Comment: accepted PR
Tight bounds for classical and quantum coin flipping
Coin flipping is a cryptographic primitive for which strictly better
protocols exist if the players are not only allowed to exchange classical, but
also quantum messages. During the past few years, several results have appeared
which give a tight bound on the range of implementable unconditionally secure
coin flips, both in the classical as well as in the quantum setting and for
both weak as well as strong coin flipping. But the picture is still incomplete:
in the quantum setting, all results consider only protocols with perfect
correctness, and in the classical setting tight bounds for strong coin flipping
are still missing. We give a general definition of coin flipping which unifies
the notion of strong and weak coin flipping (it contains both of them as
special cases) and allows the honest players to abort with a certain
probability. We give tight bounds on the achievable range of parameters both in
the classical and in the quantum setting.Comment: 18 pages, 2 figures; v2: published versio
No extension of quantum theory can have improved predictive power
According to quantum theory, measurements generate random outcomes, in stark
contrast with classical mechanics. This raises the question of whether there
could exist an extension of the theory which removes this indeterminism, as
suspected by Einstein, Podolsky and Rosen (EPR). Although this has been shown
to be impossible, existing results do not imply that the current theory is
maximally informative. Here we ask the more general question of whether any
improved predictions can be achieved by any extension of quantum theory. Under
the assumption that measurements can be chosen freely, we answer this question
in the negative: no extension of quantum theory can give more information about
the outcomes of future measurements than quantum theory itself. Our result has
significance for the foundations of quantum mechanics, as well as applications
to tasks that exploit the inherent randomness in quantum theory, such as
quantum cryptography.Comment: 6 pages plus 7 of supplementary material, 3 figures. Title changed.
Added discussion on Bell's notion of locality. FAQ answered at
http://perimeterinstitute.ca/personal/rcolbeck/FAQ.htm
Size resolved mass concentration and elemental composition of atmospheric aerosols over the Eastern Mediterranean area
International audienceA Berner low pressure impactor was used to collect size-segregated aerosol samples at Finokalia, located on the north-eastern coast of Crete, Greece during July 2000 and January 2001. Several samples were also collected during the summer campaign aboard the research vessel "AEGAIEO" in the Aegean Sea. Gravimetric analysis and inversion techniques yielded daily PM1 and PM10 mass concentrations. The samples were also analysed by PIXE giving the elemental size distributions of Al, Si, K, Ca, Ti, Mn, Fe, Sr, S, Cl, Ni, V, Cu, Cr, Zn, and Pb. The crustal elements and sea-salt had a unimodal supermicron size distribution. Sulphur was found predominantly in submicron fractions. K, V, and Ni exhibited a bimodal distribution with a submicron mode produced by forest fires and oil combustion. The anthropogenic elements had broad and not well-defined distributions. The time series for PM1 and PM10 mass and elemental concentrations showed both daily and seasonal variation. Higher mass concentrations were observed during two incursions of Saharan dust, whilst higher concentrations of S, Cu, Zn, and Pb were encountered in samples collected in air masses arriving from northern Greece or the western coast of Turkey. Elevated concentrations of chlorine were found in samples with air masses either originating above the Atlantic Ocean and arriving at Finokalia via western Europe or recirculating over the western coast of the Black Sea
Causality - Complexity - Consistency: Can Space-Time Be Based on Logic and Computation?
The difficulty of explaining non-local correlations in a fixed causal
structure sheds new light on the old debate on whether space and time are to be
seen as fundamental. Refraining from assuming space-time as given a priori has
a number of consequences. First, the usual definitions of randomness depend on
a causal structure and turn meaningless. So motivated, we propose an intrinsic,
physically motivated measure for the randomness of a string of bits: its length
minus its normalized work value, a quantity we closely relate to its Kolmogorov
complexity (the length of the shortest program making a universal Turing
machine output this string). We test this alternative concept of randomness for
the example of non-local correlations, and we end up with a reasoning that
leads to similar conclusions as in, but is conceptually more direct than, the
probabilistic view since only the outcomes of measurements that can actually
all be carried out together are put into relation to each other. In the same
context-free spirit, we connect the logical reversibility of an evolution to
the second law of thermodynamics and the arrow of time. Refining this, we end
up with a speculation on the emergence of a space-time structure on bit strings
in terms of data-compressibility relations. Finally, we show that logical
consistency, by which we replace the abandoned causality, it strictly weaker a
constraint than the latter in the multi-party case.Comment: 17 pages, 16 figures, small correction
- …