3,045 research outputs found

    Magnitude and Sign Correlations in Heartbeat Fluctuations

    Full text link
    We propose an approach for analyzing signals with long-range correlations by decomposing the signal increment series into magnitude and sign series and analyzing their scaling properties. We show that signals with identical long-range correlations can exhibit different time organization for the magnitude and sign. We find that the magnitude series relates to the nonlinear properties of the original time series, while the sign series relates to the linear properties. We apply our approach to the heartbeat interval series and find that the magnitude series is long-range correlated, while the sign series is anticorrelated and that both magnitude and sign series may have clinical applications.Comment: 4 pages,late

    Antiarrhythmic effects of stimulating the left dorsal branch of the thoracic nerve in a canine model of paroxysmal atrial tachyarrhythmias

    Get PDF
    Background Stellate ganglion nerve activity (SGNA) precedes paroxysmal atrial tachyarrhythmia (PAT) episodes in dogs with intermittent high-rate left atrial (LA) pacing. The left dorsal branch of the thoracic nerve (LDTN) contains sympathetic nerves originating from the stellate ganglia. Objective The purpose of this study was to test the hypothesis that high-frequency electrical stimulation of the LDTN can cause stellate ganglia damage and suppress PAT. Methods We performed chronic LDTN stimulation in 6 dogs with and 2 dogs without intermittent rapid LA pacing while monitoring SGNA. Results LDTN stimulation reduced average SGNA from 4.36 μV (95% confidence interval [CI] 4.10–4.62 μV) at baseline to 3.22 μV (95% CI 3.04–3.40 μV) after 2 weeks (P = .028) and completely suppressed all PAT episodes in all dogs studied. Tyrosine hydroxylase staining showed large damaged regions in both stellate ganglia, with increased percentages of tyrosine hydroxylase–negative cells. The terminal deoxynucleotidyl transferase dUTP nick end labeling assay showed that 23.36% (95% CI 18.74%–27.98%) of ganglion cells in the left stellate ganglia and 11.15% (95% CI 9.34%–12.96%) ganglion cells in the right stellate ganglia were positive, indicating extensive cell death. A reduction of both SGNA and heart rate was also observed in dogs with LDTN stimulation but without high-rate LA pacing. Histological studies in the latter 2 dogs confirmed the presence of extensive stellate ganglia damage, along with a high percentage of terminal deoxynucleotidyl transferase dUTP nick end labeling–positive cells. Conclusion LDTN stimulation damages both left stellate ganglia and right stellate ganglia, reduces left SGNA, and is antiarrhythmic in this canine model of PAT

    Capacitive Spring Softening in Single-Walled Carbon Nanotube Nanoelectromechanical Resonators

    Full text link
    We report the capacitive spring softening effect observed in single-walled carbon nanotube (SWNT) nanoelectromechanical (NEM) resonators. The nanotube resonators adopt dual-gate configuration with both bottom-gate and side-gate capable of tuning the resonance frequency through capacitive coupling. Interestingly, downward resonance frequency shifting is observed with increasing side-gate voltage, which can be attributed to the capacitive softening of spring constant. Furthermore, in-plane vibrational modes exhibit much stronger spring softening effect than out-of-plan modes. Our dual-gate design should enable the differentiation between these two types of vibrational modes, and open up new possibility for nonlinear operation of nanotube resonators.Comment: 12 pages/ 3 figure

    Ganglionated plexi and ligament of Marshall ablation reduces atrial vulnerability and causes stellate ganglion remodeling in ambulatory dogs

    Get PDF
    Background Simultaneous activation of the stellate ganglion (SGNA), the ligament of Marshall (LOM) and the ganglionated plexi (GP) often precedes the onset of paroxysmal atrial tachyarrhythmias (PAT). Objective To test the hypothesis that ablation of the LOM and the superior left GP (SLGP) reduces atrial vulnerability and results in remodeling of the stellate ganglion. Methods Nerve activity was correlated to PAT and ventricular rate (VR) at baseline, after ablation of the LOM and SLGP, and after AF. Neuronal cell death was assessed with Tyrosine hydroxylase (TH) and terminal deoxynucleotidyl transferase dUTP nick end label (TUNEL) staining. Results There were 4±2 PAT episodes per day in controls. None were observed in the ablation group; even though SGNA and VR increased from 2.2 μV (95% confidence interval (CI); 1.2 – 3.3 μV) and 80 bpm (CI 68 – 92 bpm) at baseline to 3.0 μV (CI 2.6 – 3.4 μV, p=0.046) and 90 bpm (CI 75 – 108 bpm, p=0.026) after ablation, and to 3.1 μV (CI 1.7 – 4.5 μV, p=0.116) and 95 bpm (CI 79 – 110 bpm, p=0.075) after AF. There was an increase in TH-negative cells in the ablation group and a 19.7% (CI, 8.6 – 30.8%) TUNEL-positive staining in both the left and right SG. None were observed in the control group. Conclusion LOM and SLGP ablation caused LSG remodeling and cell death. There was reduced correlation of the VR response and PAT to SGNA. These findings support the importance of SLGP and LOM in atrial arrhythmogenesis

    Increased functional connectivity of the posterior cingulate cortex with the lateral orbitofrontal cortex in depression

    Get PDF
    To analyze the functioning of the posterior cingulate cortex (PCC) in depression, we performed the first fully voxel-level resting state functional-connectivity neuroimaging analysis of depression of the PCC, with 336 patients with major depressive disorder and 350 controls. Voxels in the PCC had significantly increased functional connectivity with the lateral orbitofrontal cortex, a region implicated in non-reward and which is thereby implicated in depression. In patients receiving medication, the functional connectivity between the lateral orbitofrontal cortex and PCC was decreased back towards that in the controls. In the 350 controls, it was shown that the PCC has high functional connectivity with the parahippocampal regions which are involved in memory. The findings support the theory that the non-reward system in the lateral orbitofrontal cortex has increased effects on memory systems, which contribute to the rumination about sad memories and events in depression. These new findings provide evidence that a key target to ameliorate depression is the lateral orbitofrontal cortex

    Heavy quarkonium 2S states in light-front quark model

    Full text link
    We study the charmonium 2S states ψ′\psi' and ηc′\eta_c', and the bottomonium 2S states Υ′\Upsilon' and ηb′\eta_b', using the light-front quark model and the 2S state wave function of harmonic oscillator as the approximation of the 2S quarkonium wave function. The decay constants, transition form factors and masses of these mesons are calculated and compared with experimental data. Predictions of quantities such as Br(ψ′→γηc′)(\psi' \to \gamma \eta_c') are made. The 2S wave function may help us learn more about the structure of these heavy quarkonia.Comment: 5 latex pages, final version for journal publicatio
    • …
    corecore