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Abstract

Background—Simultaneous activation of the stellate ganglion (SGNA), the ligament of 

Marshall (LOM) and the ganglionated plexi (GP) often precedes the onset of paroxysmal atrial 

tachyarrhythmias (PAT).

Objective—To test the hypothesis that ablation of the LOM and the superior left GP (SLGP) 

reduces atrial vulnerability and results in remodeling of the stellate ganglion.

Methods—Nerve activity was correlated to PAT and ventricular rate (VR) at baseline, after 

ablation of the LOM and SLGP, and after AF. Neuronal cell death was assessed with Tyrosine 

hydroxylase (TH) and terminal deoxynucleotidyl transferase dUTP nick end label (TUNEL) 

staining.

Results—There were 4±2 PAT episodes per day in controls. None were observed in the ablation 

group; even though SGNA and VR increased from 2.2 μV (95% confidence interval (CI); 1.2 – 3.3 
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μV) and 80 bpm (CI 68 – 92 bpm) at baseline to 3.0 μV (CI 2.6 – 3.4 μV, p=0.046) and 90 bpm (CI 

75 – 108 bpm, p=0.026) after ablation, and to 3.1 μV (CI 1.7 – 4.5 μV, p=0.116) and 95 bpm (CI 

79 – 110 bpm, p=0.075) after AF. There was an increase in TH-negative cells in the ablation group 

and a 19.7% (CI, 8.6 – 30.8%) TUNEL-positive staining in both the left and right SG. None were 

observed in the control group.

Conclusion—LOM and SLGP ablation caused LSG remodeling and cell death. There was 

reduced correlation of the VR response and PAT to SGNA. These findings support the importance 

of SLGP and LOM in atrial arrhythmogenesis.
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Introduction

Cardiac autonomic innervation consists of neurons from both the intrinsic and extrinsic 

autonomic nervous systems.1 The intrinsic autonomic nervous system is composed of 

multiple ganglionated plexus (GP) that are within the epicardial fat pads2. The neurons of 

the GPs also form extensive connections with the extrinsic cardiac nervous system which 

includes the stellate ganglion and the vagus nerve. The ligament of Marshall (LOM) has also 

been shown to be highly innervated with both sympathetic and parasympathetic neurons.3 

Studies in anesthetized dogs have shown that the GP and the LOM function as the 

“integration centers” that modulate the autonomic interactions between the extrinsic and 

intrinsic cardiac autonomic systems.4, 5 To study the importance of the Intrinsic cardiac 

nerve activity (ICNA) and the extrinsic cardiac nerve activity (ECNA) in atrial 

arrhythmogenesis, Choi et al 6 simultaneously recorded nerve activity from the fat pads at 

the left superior pulmonary vein (LSPV)-left atrial (LA) junction, the LOM and the left 

stellate ganglion (LSG) in a canine model of pacing-induced atrial fibrillation (AF). The 

authors found that ICNA either alone or in collaboration with ECNA is an invariable trigger 

of paroxysmal atrial tachycardia (PAT) or paroxysmal AF (PAF). The importance of ICNA 

in atrial arrhythmogenesis is also supported by randomized clinical trials that showed the 

benefit of GP ablation in controlling AF.7 However, in spite of adding GP ablation to a 

pulmonary vein (PV) isolation procedure, the 2-year recurrence rate of PAF remained 

significant (26%). Because of the interaction between ICNA and ECNA, we hypothesize that 

GP and LOM ablation may result in the remodeling of the extrinsic cardiac nervous system. 

That remodeling process might play a role in the recurrence of AF after a catheter ablation 

procedure. To test that hypothesis, we monitored the left stellate ganglion nerve activity 

(SGNA) after GP and LOM ablation to determine if ablation of these structures resulted in 

changes to the SGNA in a canine model of PAT and PAF.6, 8 We also performed analysis on 

the LSG for structural remodeling and cell death. The results were used to test the 

hypothesis that disassociation of the ICNA and the ECNA via GP and LOM ablation results 

in an increase in SGNA with a reduced correlation to ventricular rate (VR), and structural 

remodeling of the LSG in ambulatory dogs.9, 10
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Methods

The research protocol was approved by the Institutional Animal Care and Use Committee of 

the Indiana University School of Medicine and the Methodist Research institute, 

Indianapolis, Indiana, and conforms to the guidelines of the American Heart Association. 

Six mongrel dogs (three male, weight 20–30kg) underwent two sterile surgeries, the first to 

implant a radio transmitter to record nerve activity, and the second for LOM and superior 

left GP (SLGP) ablation and pacemaker implantation for high rate atrial pacing. For each 

surgery, anesthesia was induced with ketamine 5–10mg/kg and midazolam 0.1– 0.2mg/kg 

IV, and maintained with 2.0% isoflurane after intubation and mechanical ventilation.

Continuous Ambulatory Autonomic Nerve Recordings

During the 1st sterile surgery, a Data Sciences International (DSI; St. Paul, MN) D70-EEE or 

D70-CCTP was implanted to record the nerve activity as previously described.6 Briefly, a 

left thoracotomy was performed through the 2nd intercostal space, and a pair of bipolar 

electrodes was sutured onto the caudal half of the left stellate ganglion (LSG) to record 

SGNA. A second pair of bipolar electrodes was sutured onto the superior cardiac branch of 

the left vagal nerve 4 to 5 cm above the aortic arch to record vagal nerve activity (VNA). In 

dogs with a D70-EEE implantation (N=3), an additional bipolar pair of electrodes was 

inserted into the subcutaneous tissues of the thorax for electrocardiogram (ECG) recording. 

For dogs with the D70-CCTP implantation, the left vagal nerve recording was band-pass 

filtered from 5–100 Hz for a pseudo-ECG recording. For all devices, the transmitter and 

ground wires were inserted into a subcutaneous pocket. After 2 weeks of postoperative 

recovery, the radio-transmitter was turned on to record baseline nerve activity.

Superior Left Ganglionated Plexi and ligament of Marshall Ablation

The 2nd sterile surgery was performed approximately 4 weeks after the radio transmitter was 

implanted. A left thoracotomy was performed through the 4th intercostal space. The heart 

was exposed and electrical cautery was used to ablate the LOM and the SLGP within the fat 

pad of the LSPV-LA junction (Figure 1A, B). A modified Medtronic Secura pacemaker 

(Medtronic Inc, Minneapolis, MN) was then implanted, and a pacing lead was sutured onto 

the LA appendage for intermittent high-rate atrial pacing.6, 11 After 2 weeks of recovery, 

post-ablation baseline activity was recorded (Figure 1C). High- rate (10 Hz) atrial pacing 

was then initiated and continued for 6 days, followed by 1 day of monitoring during which 

the atrial pacemaker was turned off. During this time, the rhythm was monitored to 

determine the presence of PAT or PAF. If AF was not present, the atrial pacing protocol was 

repeated until persistent (>48 hours) AF was documented. The dogs were then euthanized 

and the heart and stellate ganglion were harvested for histological analysis.

Data Analyses

The signals were manually analyzed has previously described.6 The onset of each SGNA 

episode was used as the starting point for the analysis. To quantify the nerve activity, the 

average amplitude of nerve activity (aSGNA) was calculated over a 10-second window. 

Within each 10-second window, the signal was rectified and integrated. The result was then 

divided by the total number of samples. As depicted in Figure 2, the aSGNA and average 
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ventricular rate (VR) was then determined 5 seconds prior to and 5 seconds after this time 

point to test the hypothesis that aSGNA is associated with VR elevation. A tachyarrhythmia 

was defined as an abrupt (>50 bpm/s) increase in the atrial rate to >200 bpm that persisted 

for at least 5 seconds.12 If the tachyarrhythmia was regular, it was defined as a PAT episode. 

If the tachycardia was irregular, it was defined as a PAF episode. In addition to manual 

analyses, custom-written software was used to calculate the average amplitude of the nerve 

activities (aSGNA and aVNA) as previously described.13 Bandpass filtering (5 to 100 Hz) 

was applied to the VNA recording to obtain an ECG for heart rate and arrhythmia analyses.8

In addition to analyzing the dogs studied with the present research protocol, the data of 6 

dogs with atrial pacing without GP or LOM ablation from a previous study6 were retrieved 

and analyzed de novo with the same methods to serve as control. All dogs within the control 

group underwent a single sterile surgery for DSI radio transmitter and atrial pacemaker 

implantation, without GP or LOM ablation. The atrial pacing protocol was the same as 

described above.

Histology

Tissue samples were obtained from the recording sites and fixed in 4% formalin for 45–60 

minutes, followed by storage in 70% alcohol.14 The tissues were processed routinely, 

paraffin embedded and cut into 5-μm thick sections. Immunohistochemical staining was 

performed with antibodies against tyrosine hydroxylase (TH) using mouse monoclonal anti-

TH (Accurate Chemical, Westbury, NY). All slides were examined manually under a BX60 

microscope (Olympus, Tokyo, Japan) to determine if there were regions with decreased 

ganglionic cell density, pyknotic cell body or decreased TH staining. The first analysis was 

to compare the percentage of TH-negative cells11, 15 in each SG (ganglion cells that did not 

stain for TH). Five photos from both normal and damaged regions of each SG were captured 

using a 20X objective lens, in regions where ganglion cell density was the highest. If the 

region was too small for 5 photos, then the maximal number of photos was taken to cover 

the entire region. The number of TH-negative cells were counted manually using Photoshop 

CS6 (San Jose, CA), and a percentage was calculated to represent the ratio between TH-

negative cells and total ganglion neuronal cells in each image.15 The mean percentage of 

TH-negative cell in five selected fields was used as the value for that SG.16 TUNEL staining 

was used to detect DNA fragmentation (cell death). The slides where then double stained for 

TH and TUNEL and examined them under a model TCS SP8 (Leica Microsystems, Wetzlar, 

Germany) Confocal Microscope.

Statistical analysis

Data were expressed as mean and 95% confidence interval (CI). Statistical comparison of 

variables during baseline, the averaged amplitude of the nerve activity or the incidence of 

arrhythmia before and after rapid atrial pacing was analyzed using paired t-test. Paired t-test 

for pairwise comparison was performed to compare the VR change during different stages of 

experiments. Correlation coefficient between percent TUNEL positive non-ganglion cells 

and ganglion cells were calculated accounting for the correlation of data from the same dog. 

The bootstrap method was used calculate the confidence interval (CI) of the correlation 

coefficient. The statistics were computed using the PASW Statistics (version 18; SPSS Inc, 
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Chicago, IL) and SAS 9.2 (SAS Inc, Cary, NC). A two-sided P≤0.05 was considered to be 

statistically significant.

Results

Effects of SLGP and LOM Ablation on SGNA and ventricular rate

Table 1 shows the summary data of the quantification of nerve activity via time series 

integration, and the ventricular rate (VR) at baseline, after ablation, and after 1 week of rapid 

atrial pacing. In the ablation group, the SGNA increased after ablation as compared with 

baseline. In addition, as compared with the control group, dogs with ablation had 

significantly increased SGNA and VR. In spite of increased SGNA and VR, there was no 

correlation between the SGNA and VR after ablation. At baseline, there was a strong 

correlation as the occurrence of SGNA significantly increased VR by 78.5% (CI, 65.2 – 

91.8%). However, after ablation, the SGNA-induced VR change decreased to 20.2% (CI, 9.5 

– 30.9%, p=0.028 compared with baseline Figure 3A). SGNA increased VR by only 17.0% 

(CI, 9.3 – 24.7%, p=0.028) after one-week of rapid pacing and by only 19.3% (CI, 7.9 – 

30.8%, p=0.028) during AF. Figure 3B is an example at baseline, in which an episode of 

sympathetic discharge led to a VR increase from 67 to 117 bpm (74.6% increment). This 

contrasts with Figure 3C, that shows that an episode of sympathetic discharge in a dog with 

SLGP and LOM ablation led to a VR increase from 62 to 73 bpm (17.7% increment).

Effects of SLGP and LOM Ablation on PAT

The PAT and PAF episodes were determined for each dog during the day of monitoring 

when the pacemaker was turned off. Analysis was performed in both the ablation and control 

groups at baseline, and 1 week after pacing. Analysis was also performed in the SLGP/LOM 

ablation group after ablation, but before the onset of rapid atrial pacing. For dogs that 

underwent rapid atrial pacing without SLGP/LOM ablation,6 the number of PAT and PAF 

episodes significantly increased with pacing. Figure 4A and 4B show typical PAT episodes. 

There were 4±2 episodes of PAT per day (include 2 PAF episodes, Figure 4C) at normal 

baseline. No episodes of PAT or PAF were observed in the SLGP/LOM ablation group after 

ablation either before or after the commencement of 4±2 weeks of rapid LA pacing.

Histology Studies

The stellate ganglia (SG) from 5 dogs were harvested for histological and 

immunohistochemical analyses. The remaining SG was not successfully harvested due to 

technical difficulties associated with extensive scar formation. Within each SG that was 

histologically analyzed, ganglion cells were observed that did not have an immunoreactivity 

to tyrosine hydroxylase (TH, as indicated in Figure 5). In the ablation group, within the left 

stellate ganglion (LSG), 10.7% (CI, 6.8 – 14.5%) of the ganglion cells stained negative for 

TH. The percentage of TH-negative ganglion cells was 7.7% (CI, 5.3 – 10.1% p=0.043) in 

the right stellate ganglion (RSG). The percentage of TH negative cells in the LSG control 

group was 5.53% (CI, 3.12 – 7.93%, p=0.043 compared with LSG in the ablation group), 

and the percentage of TH negative cells in the RSG control group was 5.12% (CI, 2.56 – 

7.68%, p=0.043 compared with RSG in the ablation group).
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The slides from all available SG were then double stained for TH and TUNEL. As shown in 

the confocal immunofluorescent images in Figure 6, green shows positive TUNEL stain, red 

indicates the positive TH stain and blue is the DAPI stain of the nuclei. All 5 LSG (Figure 

6A, 6C) and 2 RSG (Figure 6D) showed TUNEL-positive ganglion cells, and occasional 

TUNEL-positive ganglion cells were found in another 3 RSG (Figure 6B). The percentage 

of TUNEL-positive ganglion cells in LSG and RSG was 19.7% (CI 8.6 – 30.8%) and 12.8% 

(CI −2.1 – 27.7%), respectively. No TUNEL-positive ganglion cells were observed in the 

control group.

Discussion

In the present study, we demonstrated that ablating the LOM and the SLGP significantly 

increased the SGNA, but reduced the correlation between the VR response and the 

occurrence of SGNA. In addition, SLGP/LOM ablation reduced atrial vulnerability as there 

were no episodes of PAT or PAF in this group despite prolonged intermittent rapid atrial 

pacing. Histological analysis demonstrated large areas of cellular damage within the stellate 

ganglion, and an increase in TH-negative and TUNEL-positive cells in the ablation group. 

These data indicate that the antiarrhythmic effects of SLGP and LOM ablation could be due 

to reduced communication between the extrinsic and intrinsic nervous systems of the heart. 

Even though there was increased SGNA, there was no evidence of increased atrial 

vulnerability.

Effects of ICNA on PAT

The canine intrinsic and extrinsic cardiac nervous systems are known to be anatomically 

similar to those in humans.17 Intrinsic cardiac neurons are found in the atria and are 

innervated with both sympathetic and parasympathetic neurons that are connected to both 

the spinal cord and medullary neurons.18 Choi et al6 demonstrated that there is a correlation 

between the ICNA and the ECNA in ambulatory dogs. All episodes of PAT and PAF were 

preceded by LOM nerve activity and/or super left ganglionated plexi (SLGP) nerve activity. 

A majority of these episodes (78%) also included ECNA co-activation. The results 

demonstrated that ICNA is an invariable trigger of atrial tachyarrhythmias in the rapid 

pacing dog model. In the present study, no episodes of either PAT or PAF were observed 

with LOM and SLGP ablation either before or after rapid LA pacing. These results support 

previous studies showing that ICNA plays an important role in atrial vulnerability.

Effects of SLGP Ablation on Persistent AF Inducibility

Rapid atrial pacing has been shown to induce neural remodeling that involved nerve 

sprouting of the intrinsic autonomic ganglia.19 The intrinsic autonomic ganglia have been 

shown to be capable of developing spontaneous neural activity independent of the extrinsic 

control.20 These neural activities could influence the development of AF by acting as 

triggers. In the present study even though no episodes of PAF or PAT were observed, all six 

dogs with SLGP/LOM ablation did eventually develop persistent AF, a finding that is 

compatible with the results of our previous studies.8, 11 This supports that ICNA could be a 

trigger mechanism for PAF or PAT and the rapid pacing in this group of dogs still develops 

an atrial substrate that is supportive of persistent AF. Ablation of the SLGP and LOM could 
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be performed in addition to other standard ablation procedures such as PV isolation or left 

atrial maze to eliminate triggers and help to reduce AF vulnerability7, 21

Recently, acute studies have been performed to determine whether GP ablation can improve 

the success rate of AF ablation.4, 22, 23 These results showed that the cardiac autonomic 

nervous system forms an interconnected neural network composed of GPs and LOM; this 

network modulated and controls the release of neurotransmitters within the myocardium.4 

These investigations also found that systematic GP ablation could increase the acute success 

rate of ablation for AF in dog models. Therefore, whether GP ablation could affect PAT in 

the long-term has not been fully clarified. Recently, Mao et al also demonstrated a decrease 

in atrial vulnerability acutely post GP ablation.24 However, after an 8 week follow up, atrial 

vulnerability increased which the authors concluded was a result of increased atrial nerve 

density. It is not known if there were any spontaneous PAT or PAF episodes in these dogs as 

monitoring between studies was not performed. A clinical study25 showed that recipients 

with orthotopic cardiac transplantation had a very low incidence (0.3%) of AF compared 

with the 21% incidence of AF in patients who have undergone coronary bypass surgery. The 

authors suggested that the complete isolation from both the extrinsic and intrinsic nervous 

system could contribute to the low incidence of AF in these patients. In the present study, we 

used cautery to ablate the LOM and SLGP but not the SG. The results support previous 

studies as there were no episodes of spontaneous PAT or PAF after ablation either before or 

after rapid pacing. These findings would support the addition of the ablation of the SLGP 

and LOM to the standard catheter ablation procedure. However, more studies need to be 

performed to evaluate the long term efficacy of SLGP and LOM ablation on AF 

vulnerability.

Effects of LOM Ablation on SG

The LOM derives from the embryonic left superior vena cava and is richly innervated by the 

autonomic nervous system.3 One of the major sympathetic nerves from the middle cervical 

and stellate ganglia courses along the LOM to innervate the heart. In the present study, we 

ablated the LOM, as well as the sympathetic nerves that originated from SG cells. The 

damaged axons led to physiological SG cell death that resulted in TUNEL-positive ganglion 

cells. All of LSG and 2 RSG had TUNEL-positive ganglion cells, indicating that neurons of 

the LOM come from both sides of the SG. Since the percentage of TUNEL-positive 

ganglion cells in LSG was 19.7%, the increased SGNA after ablation could be a result of a 

compensatory effect from the remaining healthy ganglion cells. The aSGNA increased from 

2.2 μV at baseline to 3.0 μV after ablation, and up to 3.1 μV after 1 week of rapid pacing. In 

spite of increased aSGNA, VR responses to SGNA were blunted, as the SG was dissociated 

from the atria by LOM ablation.

Limitations

We did not perform right SGNA recording to test if that will also increase. The relationship 

between both sides of the SG was not determined. A second limitation is that the effective 

refractory periods or AF inducibility before and after GP ablation were not measured.
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Conclusion

Ablation of the SLGP and LOM eliminated the occurrence of paroxysmal arrhythmias and 

reduced the correlation between the observed nerve activity and the VR even though there 

was increased SGNA. SLGP/LOM ablation also resulted in structural remodeling of the 

stellate ganglion demonstrating the connection between the ICNA and ECNA. Intrinsic 

nerve activity could influence the occurrence of atrial triggers that would increase atrial 

vulnerability to either PAT or PAF.
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Figure 1. Ablation of the SLGP and LOM and the study protocol
A, Ligament of Marshall (LOM, black arrowhead) and superior left ganglionated plexi 

(SLGP, white arrowhead). B, The scar after SLGP ablation (black arrowhead). C, Diagram 

of study protocol.

Zhao et al. Page 10

Heart Rhythm. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Stellate ganglion nerve activity (SGNA) and ventricular rate (VR)
A was recorded at baseline. The onset of SGNA (red bar) was identified first, then the 

average VR 5 seconds prior to and 5 seconds after the onset of SGNA was determined. B, 
The same analyses was performed to compare the occurrence of SGNA to VR at baseline 

post-ablation. An example showing SGNA that induced little VR change is shown.

Zhao et al. Page 11

Heart Rhythm. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Effect of SLGP and LOM ablation on SGNA-induced VR changes
A, Statistical dot plot showing that the SGNA-induced VR acceleration was markedly 

attenuated by SLGP ablation compared with the control group. B, An example at baseline 

shows that a burst of SGNA led to VR increase from 67 to 117 bpm (74.6% increment). C, 
An example after SLGP ablation shows that a burst of SGNA led to VR increase from 62 to 

73 bpm (17.7% increment).
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Figure 4. The episodes of paroxysmal atrial tachyarrhythmia (PAT) and paroxysmal atrial 
fibrillation (PAF)
A, An example of PAT; B, 4 continuous PAT episodes within 90 seconds; C, An example of 

PAF.
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Figure 5. Tyrosine hydroxylase (TH) staining of the SG
Low magnification (1.25X objective lens) shows the presence of both a damaged region and 

a normal region in the same LSG (Panel A) and RSG (Panel B) of the ablation group. 

Images of these regions are also shown under a higher magnification (20X objective lens). 

Arrows point to ganglion cells that did not stain for tyrosine hydroxylase (TH negative). 

There was evidence of nuclear shrinking and pyknosis in the ganglion cells; Panels C and D 
show the control group LSG and RSG respectively.
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Figure 6. Confocal images of TH and TUNEL double staining of SG
Green shows positive TUNEL stain, red indicates the positive TH stain and blue is the DAPI 

stain of the nuclei. There were 2 patterns observed in the SG of the GP ablation group. In the 

first pattern, LSG (A) have TUNEL-positive ganglion cells, and occasional TUNEL-positive 

ganglion cells were found in RSG (B). In the second pattern, both LSG (C) and RSG (D) 

have the same percentage of TUNEL-positive ganglion cells. There were no TUNEL-

positive cells in the LSG (E) or RSG (F) of the control group.
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