93 research outputs found

    Rapid "Turn-on" of type 1 AGN in a quiescent early type galaxy SDSS1115+0544

    Get PDF
    We present a detailed study of a transient in the center of SDSS1115+0544 based on the extensive UV, optical, mid-IR light curves (LC) and spectra over 1200 days. The host galaxy is a quiescent early type galaxy at zz = 0.0899 with a blackhole mass of 2×107M2\times10^7M_\odot. The transient underwent a 2.5 magnitude brightening over 120\sim120 days, reaching a peak VV-band luminosity (extinction corrected) of 20.9-20.9 magnitude, then fading 0.5 magnitude over 200 days, settling into a plateau of >600>600 days. Following the optical brightening are the significant mid-IR flares at 3.43.4 and 4.5μ4.5\mum, with a peak time delay of 180\sim180 days. The mid-IR LCs are explained as the echo of UV photons by a dust medium with a radius of 5×10175\times10^{17} cm, consistent with E(BV)\rm E(B-V) of 0.58 inferred from the spectra. This event is very energetic with an extinction corrected Lbol4×1044L_{bol} \sim 4\times10^{44} erg s1^{-1}. Optical spectra over 400 days in the plateau phase revealed newly formed broad Hα,β\alpha, \beta emission with a FWHM of 3750\sim3750 km s1^{-1} and narrow coronal lines such as [Fe VII], [Ne V]. This flare also has a steeply rising UV continuum, detected by multi-epoch SwiftSwift data at +700+700 to +900+900 days post optical peak. The broad Balmer lines and the UV continuum do not show significant temporal variations. The slow evolving LCs over 1200 days, the constant Balmer lines and UV continuum at late-times rule out TDE and SN IIn as the physical model for this event. We propose that this event is a `turn-on' AGN, transitioning from a quiescent state to a type 1 AGN with a sub-Eddington accretion rate of 0.017M0.017M_\odot/yr. This change occurred on a very short time scale of 120200\sim 120- 200 days. The discovery of such a rapid `turn-on' AGN poses challenges to accretion disk theories and may indicate such event is not extremely rare.Comment: Comments are welcome. Emails to the first author. Accepted for publication in Ap

    Transcriptomic analysis of mRNA expression and alternative splicing during mouse sex determination

    Get PDF
    Mammalian sex determination hinges on sexually dimorphic transcriptional programs in developing fetal gonads. A comprehensive view of these programs is crucial for understanding the normal development of fetal testes and ovaries and the etiology of human disorders of sex development (DSDs), many of which remain unexplained. Using strand-specific RNA-sequencing, we characterized the mouse fetal gonadal transcriptome from 10.5 to 13.5 days post coitum, a key time window in sex determination and gonad development. Our dataset benefits from a greater sensitivity, accuracy and dynamic range compared to microarray studies, allows global dynamics and sex-specificity of gene expression to be assessed, and provides a window to non-transcriptional events such as alternative splicing. Spliceomic analysis uncovered female-specific regulation of Lef1 splicing, which may contribute to the enhanced WNT signaling activity in XX gonads. We provide a user-friendly visualization tool for the complete transcriptomic and spliceomic dataset as a resource for the field

    Rapid “Turn-on” of Type-1 AGN in a Quiescent Early-type Galaxy SDSS1115+0544

    Get PDF
    We present a detailed study of a transient in the center of SDSS1115+0544 based on the extensive UV, optical, mid-IR light curves (LCs) and spectra over 1200 days. The host galaxy is a quiescent early-type galaxy at z = 0.0899 with a black hole mass of 2 × 10^7 M⊙. The transient underwent a 2.5 mag brightening over ~120 days, reaching a peak V-band luminosity (extinction corrected) of −20.9 mag, then fading 0.5 mag over 200 days, settling into a plateau of >600 days. Following the optical brightening are the significant mid-IR flares at 3.4 and 4.5 μm, with a peak time delay of ~180 days. The mid-IR LCs are explained as the echo of UV photons by a dust medium with a radius of 5 × 10^(17) cm, consistent with E(B − V) of 0.58 inferred from the spectra. This event is very energetic with an extinction corrected L_(bol) ~ 4 × 10^(44) erg s^(−1). Optical spectra over 400 days in the plateau phase revealed newly formed broad Hα, β emission with a FWHM of ~3750 km s^(−1) and narrow coronal lines such as [Fe VII], [Ne V]. This flare also has a steeply rising UV continuum, detected by multi-epoch Swift data at +700 to +900 days post optical peak. The broad Balmer lines and the UV continuum do not show significant temporal variations. The slow evolving LCs over 1200 days, the constant Balmer lines, and UV continuum at late times rule out tidal disruption event and SN IIn as the physical model for this event. We propose that this event is a "turn-on" AGN, transitioning from a quiescent state to a type-1 AGN with a sub-Eddington accretion rate of 0.017 M⊙ yr^(−1). This change occurred on a very short timescale of ~120–200 days. The discovery of such a rapid "turn-on" AGN poses challenges to accretion disk theories and suggests more future detections of similar events

    Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development.

    Get PDF
    BACKGROUND: We present the genome sequence of the tammar wallaby, Macropus eugenii, which is a member of the kangaroo family and the first representative of the iconic hopping mammals that symbolize Australia to be sequenced. The tammar has many unusual biological characteristics, including the longest period of embryonic diapause of any mammal, extremely synchronized seasonal breeding and prolonged and sophisticated lactation within a well-defined pouch. Like other marsupials, it gives birth to highly altricial young, and has a small number of very large chromosomes, making it a valuable model for genomics, reproduction and development. RESULTS: The genome has been sequenced to 2 × coverage using Sanger sequencing, enhanced with additional next generation sequencing and the integration of extensive physical and linkage maps to build the genome assembly. We also sequenced the tammar transcriptome across many tissues and developmental time points. Our analyses of these data shed light on mammalian reproduction, development and genome evolution: there is innovation in reproductive and lactational genes, rapid evolution of germ cell genes, and incomplete, locus-specific X inactivation. We also observe novel retrotransposons and a highly rearranged major histocompatibility complex, with many class I genes located outside the complex. Novel microRNAs in the tammar HOX clusters uncover new potential mammalian HOX regulatory elements. CONCLUSIONS: Analyses of these resources enhance our understanding of marsupial gene evolution, identify marsupial-specific conserved non-coding elements and critical genes across a range of biological systems, including reproduction, development and immunity, and provide new insight into marsupial and mammalian biology and genome evolution

    Gene Regulation and Epigenetic Remodeling in Murine Embryonic Stem Cells by c-Myc

    Get PDF
    BACKGROUND:The Myc oncoprotein, a transcriptional regulator involved in the etiology of many different tumor types, has been demonstrated to play an important role in the functions of embryonic stem (ES) cells. Nonetheless, it is still unclear as to whether Myc has unique target and functions in ES cells. METHODOLOGY/PRINCIPAL FINDINGS:To elucidate the role of c-Myc in murine ES cells, we mapped its genomic binding sites by chromatin-immunoprecipitation combined with DNA microarrays (ChIP-chip). In addition to previously identified targets we identified genes involved in pluripotency, early development, and chromatin modification/structure that are bound and regulated by c-Myc in murine ES cells. Myc also binds and regulates loci previously identified as Polycomb (PcG) targets, including genes that contain bivalent chromatin domains. To determine whether c-Myc influences the epigenetic state of Myc-bound genes, we assessed the patterns of trimethylation of histone H3-K4 and H3-K27 in mES cells containing normal, increased, and reduced levels of c-Myc. Our analysis reveals widespread and surprisingly diverse changes in repressive and activating histone methylation marks both proximal and distal to Myc binding sites. Furthermore, analysis of bulk chromatin from phenotypically normal c-myc null E7 embryos demonstrates a 70-80% decrease in H3-K4me3, with little change in H3-K27me3, compared to wild-type embryos indicating that Myc is required to maintain normal levels of histone methylation. CONCLUSIONS/SIGNIFICANCE:We show that Myc induces widespread and diverse changes in histone methylation in ES cells. We postulate that these changes are indirect effects of Myc mediated by its regulation of target genes involved in chromatin remodeling. We further show that a subset of PcG-bound genes with bivalent histone methylation patterns are bound and regulated in response to altered c-Myc levels. Our data indicate that in mES cells c-Myc binds, regulates, and influences the histone modification patterns of genes involved in chromatin remodeling, pluripotency, and differentiation
    corecore