573 research outputs found

    Effect of Surface Patterning and Presence of Collagen I on the Phenotypic Changes of Embryonic Stem Cell Derived Cardiomyocytes

    Get PDF
    Embryonic stem cell derived cardiomyocytes have been widely investigated for stem cell therapy or in vitro model systems. This study examines how two specific biophysical stimuli, collagen I and cell alignment, affect the phenotypes of embryonic stem cell derived cardiomyocytes in vitro. Three phenotypic indicators are assessed: sarcomere organization, cell elongation, and percentage of binucleation. Murine embryonic stem cells were differentiated in a hanging drop assay and cardiomyocytes expressing GFP-α-actinin were isolated by fluorescent sorting. First, the effect of collagen I was investigated. Addition of soluble collagen I markedly reduced binucleation as a result of an increase in cytokinesis. Laden with a collagen gel layer, myocyte mobility and cell shape change were impeded. Second, the effect of cell alignment by microcontact printing and nanopattern topography was investigated. Both patterning techniques induced cell alignment and elongation. Microcontact printing of 20 Όm line pattern accelerated binucleation and nanotopography with 700 nm ridges and 3.5 Όm grooves negatively regulated binucleation. This study highlights the importance of biophysical cues in the morphological changes of differentiated cardiomyocytes and may have important implications on how these cells incorporate into the native myocardium.Singapore-MIT Alliance for Research and TechnologyNational Science Foundation (U.S.) ((Science and Technology Center (EBICS): Emergent Behaviors of Integrated Cellular Systems, Grant CBET-0939511)Charles Stark Draper Laboratory (Internal Research and Development Program

    Recurrent neural networks can explain flexible trading of speed and accuracy in biological vision.

    Get PDF
    Deep feedforward neural network models of vision dominate in both computational neuroscience and engineering. The primate visual system, by contrast, contains abundant recurrent connections. Recurrent signal flow enables recycling of limited computational resources over time, and so might boost the performance of a physically finite brain or model. Here we show: (1) Recurrent convolutional neural network models outperform feedforward convolutional models matched in their number of parameters in large-scale visual recognition tasks on natural images. (2) Setting a confidence threshold, at which recurrent computations terminate and a decision is made, enables flexible trading of speed for accuracy. At a given confidence threshold, the model expends more time and energy on images that are harder to recognise, without requiring additional parameters for deeper computations. (3) The recurrent model's reaction time for an image predicts the human reaction time for the same image better than several parameter-matched and state-of-the-art feedforward models. (4) Across confidence thresholds, the recurrent model emulates the behaviour of feedforward control models in that it achieves the same accuracy at approximately the same computational cost (mean number of floating-point operations). However, the recurrent model can be run longer (higher confidence threshold) and then outperforms parameter-matched feedforward comparison models. These results suggest that recurrent connectivity, a hallmark of biological visual systems, may be essential for understanding the accuracy, flexibility, and dynamics of human visual recognition

    Recurrent Urinary Tract Infection: A Mystery in Search of Better Model Systems

    Get PDF
    Urinary tract infections (UTIs) are among the most common infectious diseases worldwide but are significantly understudied. Uropathogenic E. coli (UPEC) accounts for a significant proportion of UTI, but a large number of other species can infect the urinary tract, each of which will have unique host-pathogen interactions with the bladder environment. Given the substantial economic burden of UTI and its increasing antibiotic resistance, there is an urgent need to better understand UTI pathophysiology – especially its tendency to relapse and recur. Most models developed to date use murine infection; few human-relevant models exist. Of these, the majority of in vitro UTI models have utilized cells in static culture, but UTI needs to be studied in the context of the unique aspects of the bladder’s biophysical environment (e.g., tissue architecture, urine, fluid flow, and stretch). In this review, we summarize the complexities of recurrent UTI, critically assess current infection models and discuss potential improvements. More advanced human cell-based in vitro models have the potential to enable a better understanding of the etiology of UTI disease and to provide a complementary platform alongside animals for drug screening and the search for better treatments

    Inhibitory effects of cytoskeleton disrupting drugs and GDP-locked Rab mutants on bradykinin B2 receptor cycling

    Get PDF
    The bradykinin (BK) B2 receptor (B2R) is G protein coupled and phosphorylated upon agonist stimulation; its endocytosis and recycling are documented. We assessed the effect of drugs that affect the cytoskeleton on B2R cycling. These drugs were targeted to tubulin (paclitaxel, or the novel combretastatin A-4 mimetic 3,4,5-trimethoxyphenyl-4-(2-oxoimidazolidin-1-yl)benzenesulfonate [IMZ-602]) and actin (cytochalasin D). Tubulin ligands did not alter agonist-induced receptor endocytosis, as shown using antibodies reactive with myc-tagged B2Rs (microscopy, cytofluorometry), but rather reduced the progression of the ligand–receptor–ÎČ-arrestin complex from the cell periphery to the interior. The 3 fluorescent probes of this complex (B2R-green fluorescent protein [B2R-GFP], the fluorescent agonist fluorescein-5-thiocarbamoyl-D-Arg-[Hyp3, Igl5, Oic7, Igl8]-BK and ÎČ-arrestin2–GFP) were condensed in punctuate structures that remained close to the cell surface in the presence of IMZ-602. Cytochalasin D selectively inhibited the recycling of endocytosed B2R-GFP (B2R-GFP imaging, [3H]BK binding). Dominant negative (GDP-locked)-Rab5 and -Rab11 reproduced the effects of inhibitors of tubulin and actin, respectively, on the cycling of B2R-GFP. GDP-locked-Rab4 also inhibited B2R-GFP recycling to the cell surface. Consistent with the displacement of cargo along specific cytoskeletal elements, Rab5-associated progression of the endocytosed BK B2R follows microtubules toward their (−) end, while its recycling progresses along actin fibers to the cell surface. However, tubulin ligands do not suppress the tested desensitization or resensitization mechanisms of the B2

    Global occurrence of Torque teno virus in water systems

    Get PDF
    Bacterial indicator organisms are used globally to assess the microbiological safety of waters. However, waterborne viral outbreaks have occurred in drinking water systems despite negative bacterial results. Using viral markers may therefore provide more accurate health risk assessment data. In this study, fecal, wastewater, stormwater, surface water (fresh and salt), groundwater, and drinking water samples were analyzed for the presence or concentration of traditional indicators, innovative indicators and viral markers. Samples were obtained in the United States, Italy, and Australia and results compared to those reported for studies conducted in Asia and South America as well. Indicators included total coliforms, Escherichia coli, enterococci, male-specific coliphages, somatic coliphages and microviradae. Viral markers included adenovirus, polyomavirus, and a potential new surrogate, Torque teno virus (TTV). TTV was more frequently found in wastewaters (38-100%) and waters influenced by waste discharges (25%) than in surface waters used as drinking water sources (5%). TTV was also specific to human rather than animal feces. While TTV numbers were strongly correlated to other viral markers in wastewaters, suggesting its utility as a fecal contamination marker, data limitations and TTV presence in treated drinking waters demonstrates that additional research is needed on this potential viral indicator

    Cystamine/cysteamine rescues the dopaminergic system and shows neurorestorative properties in an animal model of Parkinson's disease.

    Get PDF
    The neuroprotective properties of cystamine identified in pre-clinical studies have fast-tracked this compound to clinical trials in Huntington's disease, showing tolerability and benefits on motor symptoms. We tested whether cystamine could have such properties in a Parkinson's disease murine model and now provide evidence that it can not only prevent the neurodegenerative process but also can reverse motor impairments created by a 6-hydroxydopamine lesion 3weeks post-surgery. Importantly, we report that cystamine has neurorestorative properties 5weeks post-lesion as seen on the number of nigral dopaminergic neurons which is comparable with treatments of cysteamine, the reduced form of cystamine used in the clinic, as well as rasagiline, increasingly prescribed in early parkinsonism. All three compounds induced neurite arborization of the remaining dopaminergic cells which was further confirmed in ex vivo dopaminergic explants derived from Pitx3-GFP mice. The disease-modifying effects displayed by cystamine/cysteamine would encourage clinical testing

    Bradykinin receptors : agonists, antagonists, expression, signaling and adaptation to sustained stimulation

    Get PDF
    Bradykinin-related peptides, the kinins, are blood-derived peptides that stimulate 2 G protein–coupled receptors, the B1 and B2 receptors (B1R, B2R). The pharmacologic and molecular identities of these 2 receptor subtypes will be succinctly reviewed, with emphasis on drug development, receptor expression, signaling, and adaptation to persistent stimulation. Peptide and nonpeptide antagonists and fluorescent ligands have been produced for each receptor. The B2R is widely and constitutively expressed in mammalian tissues, whereas the B1R is mostly inducible under the effect of cytokines during infection and immunopathology. Both receptor subtypes mediate the vascular aspects of inflammation (vasodilation, edema formation). On this basis, icatibant, a peptide antagonist of the B2R, is approved in the management of hereditary angioedema attacks. Other clinical applications are still elusive despite the maturity of the medicinal chemistry efforts applied to kinin receptors. While both receptor subtypes are mainly coupled to the Gq protein and related second messengers, the B2R is temporarily desensitized by a cycle of phosphorylation/endocytosis followed by recycling, whereas the nonphosphorylable B1R is relatively resistant to desensitization and translocated to caveolae on activation

    The recovery umbrella in the world of elite sport: Do not forget the coaching and performance staff

    Get PDF
    In the field of sports science, the recovery umbrella is a trending topic, and even more so in the world of elite sports. This is evidenced by the significant increase in scientific publications during the last 10 years as teams look to find a competitive edge. Recovery is recognized to be an integral component to assist athlete preparation in the restoration of physical and psychological function, and subsequently, performance in elite team sports athletes. However, the importance of recovery in team staff members (sports coaches and performance staff) in elite sports appears to be a forgotten element. Given the unrelenting intense nature of daily tasks and responsibilities of team staff members, the elite sports environment can predispose coaches to increased susceptibility to psycho-socio physiological fatigue burden, and negatively affect health, wellbeing, and performance. Therefore, the aim of this opinion was to (1) develop an educational recovery resource for team staff members, (2) identify organizational task-specific fatigue indicators and barriers to recovery and self-care in team staff members, and (3) present recovery implementation strategies to assist team staff members in meeting their organizational functions. It is essential that we do not forget the coaching and performance staff in the recovery process. © 2021 by the authors. Licensee MDPI, Basel, Switzerland
    • 

    corecore