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Urinary tract infections (UTIs) are among the most common infectious diseases worldwide
but are significantly understudied. Uropathogenic E. coli (UPEC) accounts for a significant
proportion of UTI, but a large number of other species can infect the urinary tract, each of
which will have unique host-pathogen interactions with the bladder environment. Given
the substantial economic burden of UTI and its increasing antibiotic resistance, there is an
urgent need to better understand UTI pathophysiology – especially its tendency to relapse
and recur. Most models developed to date use murine infection; few human-relevant
models exist. Of these, the majority of in vitro UTI models have utilized cells in static
culture, but UTI needs to be studied in the context of the unique aspects of the bladder’s
biophysical environment (e.g., tissue architecture, urine, fluid flow, and stretch). In this
review, we summarize the complexities of recurrent UTI, critically assess current infection
models and discuss potential improvements. More advanced human cell-based in vitro
models have the potential to enable a better understanding of the etiology of UTI disease
and to provide a complementary platform alongside animals for drug screening and the
search for better treatments.

Keywords: urinary tract infection (UTI), microphysiological systems, in vitro infection model systems, organ-on-
chip, organoid, urothelium, uropathogenic E. coli (UPEC), mouse models
INTRODUCTION: URINARY TRACT INFECTION – A GLOBALLY
IMPORTANT DISEASE IN NEED OF BETTER HUMAN-BASED
MODEL SYSTEMS

UTIs are among the most common infectious diseases worldwide, causing approximately 150
million cases per annum (Stamm and Norrby, 2001), but are significantly understudied (Losada
et al., 2016). Although much more common in women, UTI can affect men and children (Foxman,
2010) and after respiratory infection, it is the most common infectious disease of our ageing
population (Rowe and Juthani-Mehta, 2013). In care homes, UTI is the most common infectious
disease of all (Rowe and Juthani-Mehta, 2013). What’s more, UTI is one of the most frequent
healthcare-acquired infections, and it is particularly problematic for people with multiple sclerosis,
spinal injuries, pregnant women and patients requiring urinary catheters (Foxman, 2003). As a
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result, UTI imposes a substantial economic and healthcare
burden (Foxman, 2010). In addition, because of the vast
number of individual treatments required, the World Health
Organization has described antibiotic resistance in uropathogens
as a key pressure point in the growing global antimicrobial
resistance crisis (WHO, 2014). As a number of the bacteria
involved also infect different bodily niches, resistance can affect
treatment of other diseases, including those requiring surgery.
There is therefore an urgent need to better understand UTI
pathophysiology, so that alternatives to antibiotics can
be developed.

Uropathogenic E. coli (UPEC) accounts for about 80% of
community-acquired UTI in otherwise healthy people
(Foxman, 2003), but a large number of other bacterial species
can cause a UTI (Foxman, 2010). One of the biggest concerns
about UTI is its tendency to recur. While there have been
advances in new treatments and vaccines (reviewed in O’Brien
et al., 2016), antibiotics remain the mainstay of therapy. Even
despite treatment, up to 25% of women experience a relapse
within six months (Foxman et al., 2000); in one large study, 2%
had six or more episodes within a two-year period (Laupland
et al., 2007). Some patients experience recurrent UTI for years,
necessitating prophylactic antibiotics that only increase the risk
of antimicrobial resistance (Selekman et al., 2018). Although
the pathophysiology of UTI – primarily of UPEC-associated
disease – has been extensively researched in animal models
(Hunstad and Justice, 2010), relatively little is understood about
the infection cycle in humans. In particular, the behavior of
E. coli pathogens in the human bladder lumen is understudied,
and the situation for other bacterial species is even hazier.

To develop new treatment strategies for UTI, it is imperative
that researchers understand the pathophysiology. Although
careful studies in UTI patients have been greatly illustrative, as
with most diseases, there are limits to what can be understood in
this context. The study of UTI with small animal models and cell
culture systems, while also incredibly valuable, still have
limitations. Further progress in improving the lot of UTI
patients will require advances in human-based model systems.

In this review, we will discuss the proposed mechanisms of
UTI pathogenesis and recurrence, and highlight the unknowns
that remain. Next, we will discuss the animal models used to
study UTI, followed by the main in vitro human-cell-based
models, examining their strengths and limitations. Then we
will review the key features of human bladder physiology that
ideally would be present in an improved in vitro model system.
Finally, we will discuss state-of-the-art platforms and solutions
to these challenges, and conclude with our perspectives on where
the field is headed.
THE MECHANISMS OF RECURRENT UTI:
A MULTI-FACETED PROBLEM

Recurrent urinary tract infection (rUTI) represents a massive
burden for the economy, for healthcare systems and for the
patients who suffer from them. Several hypotheses for the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
mechanism of rUTI have emerged over the past decades –
which are not necessarily mutually exclusive. Indeed, different –
and likely multiple – scenarios will exist within different
patients and across different species of uropathogen, as
shown recently (Thänert et al., 2019). We argue that better
human-based infection models will be required to elucidate
them fully.

Microbiota, Dysbiosis, and
Distal Reservoirs
One of the most long-standing theories for recurrence of UTI is
that the gastrointestinal tract functions as a reservoir for
uropathogens, which are repeatedly reintroduced into the
urinary tract via contamination of the periurethral surface and
subsequent retrograde ascension. Indeed, common
uropathogens are abundant as gut commensals, and there are
many papers supporting this mechanism (reviewed recently in
(Jones-Freeman et al., 2021). In agreement, recent studies with
patients experiencing rUTI revealed that re-infection was usually
preceded by a bloom of uropathogens in the intestine (Thänert
et al., 2019), and that gut abundance of Escherichia and
Enterococcus served as an independent risk factor for late
problematic urine colonization in kidney transplant recipients,
with genomic strain analysis supporting the association
(Magruder et al., 2019). Also in support of this hypothesis,
molecules designed to selectively deplete uropathogenic E. coli
in the gut also decrease the incidence of UTIs in mice [e.g.
(Spaulding et al., 2017)].

The gut is not the only proximal niche that might harbor
uropathogens, however. A crosstalk between the vaginal and
urinary microbiomes has been reported based on both clinical
correlations and experimental models, and the data strongly
suggest that this interconnection affects the recurrence of UTIs
(Komesu et al., 2020; Lewis and Gilbert, 2020). Moreover, the now
well-established observation that healthy urinary tracts are not
sterile and that their microbiota is distinct from those of chronic
UTI patients has highlighted the potential relationship between
bladder dysbiosis and rUTI (Khasriya et al., 2013; Hilt et al., 2014;
Neugent et al., 2020). Dysbiosis, defined as an imbalance in the
natural microbial community, may even affect several host
protective mechanisms, such as those mediated by commensals.
Also, alteration of the urinary microbiota through the introduction
of native microbes from either the gut or the vagina may potentiate
the recurrence of UTI. For example, the vaginal commensal
Gardnerella vaginalis was reported in the urinary tract of both
human males and females (Fairley and Birch, 1983; Lam et al.,
1988). More recently, the inoculation of Gardnerella into the
bladders of mice that had recovered from UPEC infection caused
urothelium exfoliation and facilitated the exposure of intracellular
UPEC reservoirs in the bladder (Gilbert et al., 2017). In addition,
this exposure increased the severity of infection compared with
control mice. Of note, a small clinical trial showed that the
introduction of a probiotic Lactobacillus species capable of
outcompeting uropathogens into the vagina of women with rUTI
was able to modestly reduce the incidence of UTI (Stapleton et al.,
2011). Reciprocally, commensal Lactobacillus in the vagina establish
May 2021 | Volume 11 | Article 691210
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a low pH that is non-permissive to uropathogenic species such as
E. coli; if these commensals are outcompeted, uropathogens can
become the dominant vaginal species, which would facilitate their
eventual transit to the urethra (Brannon et al., 2020; Lewis and
Gilbert, 2020).

Antibiotics are another important factor affecting rUTI, not
only those taken to treat UTI, but also other indications.
Antibiotics favor the development and proliferation of
multidrug-resistant organisms (either in the bladder or in the
gut/vagina), as well as increase the availability of niches that are
no longer inhabited by commensals. As a result, these niches can
become dysbiotic and more easily colonized by more virulent
and persistent bacteria (Chen et al., 2013).

Taken together, these various strands of evidence have boosted
the search for probiotic approaches and other therapies focused on
the modulation of microbiota in the UTI context. However, a
human cell-based model that could accurately mimic the human
urinary microbiota and its interactions with other microbiota would
be a very helpful tool in this endeavor.

Bacterial Virulence and
Bladder Reservoirs
Many strain-specific bacterial virulence factors may contribute to
the recurrence of UTI, such as flagella/pili, adhesins, extracellular
polysaccharides, lipopolysaccharides, toxins, ureases, proteases
and iron-scavenging siderophores. These factors allow
uropathogens to survive during long periods in a nutrient-
limited habitat, helping them to adhere, colonize, damage and
invade host cells, as well as to evade host defenses, ultimately
increasing their persistence in the urinary tract. For instance, a
common uropathogenic strategy is the formation of biofilms,
either directly on the urothelial surface or on indwelling devices
such as catheters (Jansen et al., 2004; Jacobsen and Shirtliff,
2011). This behavior has been reported in Klebsiella pneumoniae
(Reid et al., 1992; Stahlhut et al., 2012), Pseudomonas aeruginosa
(Ivanova et al., 2015; Saini et al., 2015), UPEC (Ferrières et al.,
2007) and Enterococci (Sillanpää et al., 2010), and may even be
facilitated by polymicrobial interactions during infection
(Gaston et al., 2020). The biofilm provides an ideal
physicochemical barrier that protects uropathogens from
antimicrobial agents, host immunity and other stresses,
allowing them to persist and reinfect the urinary tract.
Furthermore, a subpopulation of bacterial cells in biofilms, the
so-called persistors, are known to reversibly reduce their
metabolic activity, adopting a dormant state that can evade
host defenses as well as treatments that target active metabolic
pathways or activities such as cell division (Wood et al., 2013).
Another strategy is the adhesion of bacteria either to the host cell
surface and/or the extracellular matrix (ECM), through the use of
a vast arsenal of virulence factors. Among the most common are
curli proteins (similar to amyloid fibers), which are major
facilitators of UPEC colonization (Luna-Pineda et al., 2019).
These proteins allow bacterial binding to ECM and serum
proteins such as fibronectin, laminin and plasminogen, and are
highly expressed among Enterobacteriaceae. P-type pilus and the
FimH fimbrial adhesin (part of the Type-1 pilus) have also
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
received attention due to their high binding affinity with
urothelial receptors, being important players for UPEC
colonization and/or invasion in several UTI models (Mulvey
et al., 1998; Zhou et al., 2001; Bishop et al., 2007; Rosen et al.,
2008; Feenstra et al., 2017). Therefore, a number of therapeutic
approaches against rUTI target specific virulence factors, mainly
blocking adhesion and/or biofilm formation (Liao et al., 2012;
Flores-Mireles et al., 2014; Mike et al., 2016).

Another bacterial mechanism implicated in rUTI is the ability of
bacteria to invade host urothelial cells and establish intracellular
bacterial communities (IBCs). This was first discovered in the early
2000s in a UPEC mouse model of induced UTI, in which the
bacteria subverted host defenses, invaded urothelial cells and
formed IBCs that could later erupt and re-establish UTI
(Anderson et al., 2003; Justice et al., 2004). In this exciting model,
after invasion, bacteria rapidly multiply in the cytoplasm of
superficial bladder epithelial cells, where they form “pods” that
can expand, blister-like, into the lumen of the bladder as the
community grows (Anderson et al., 2003). These communities are
embedded in a biofilm-like matrix, which may confer a protective
effect similar to that seen in more conventional biofilms. In other
cases, UPEC may even invade deeper layers of the urothelium,
remaining in a membrane-bound compartment with little to no
metabolic activity. These “quiescent intracellular reservoirs” (QIR)
can be latent for months in mice, and can be re-activated after the
exfoliation of the upper urothelium cell layers (Mulvey et al., 2001;
Mysorekar and Hultgren, 2006).

While IBCs have also been experimentally demonstrated in
human cancer cell lines (e.g. (Bishop et al., 2007; González et al.,
2020), nearly two decades on from the original IBC discovery in
mice, surprisingly few papers have reported the existence of
UPEC IBCs in patients. A handful show IBC using exfoliated
urothelial cells from the urine of human UTI patients (Rosen
et al., 2007; Robino et al., 2013; Robino et al., 2014; Cheng et al.,
2016), although only some (Robino et al., 2013; Robino et al.,
2014) used imaging resolution with sufficient discriminatory
power to distinguish intracellular bacteria from those on the
surface of these notoriously flat cells. To our knowledge, only one
group has studied human biopsies and reported the existence of
IBC and QIR (De Nisco et al., 2019). In contrast, in a recent study
with a porcine model, which has a more similar urogenital
anatomy, physiology and immune response to human
compared with small-animal models, IBCs were not observed
in the bladder after UPEC infection, although high loads of
bacteria were detected after prolonged infection, some forming
biofilm-like extracellular aggregates (Nielsen et al., 2019).
Therefore, more studies on the role of IBC and QIR in rUTI in
humans or human bladder model systems would be welcome.

Although intracellular lifestyle stages have been observed
mainly in UPEC infection, other uropathogens, such as
Klebsiella pneumoniae (Rosen et al., 2008), Staphylococcus
saprophyticus (Szabados et al., 2008) and Salmonella enterica
(Bishop et al., 2007) might also display them, at least in murine
models and/or cell lines. More recently, Enterococcus faecalis was
shown to reside inside urothelial cells shed from patients with
chronic UTI (Horsley et al., 2013), and to invade a human
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https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Murray et al. Model Systems for Recurrent UTI
organoid model (Horsley et al., 2018). It remains to be seen
whether other uropathogens invade human cells, and how
widespread the phenomenon is in patients.

Morphological Alterations
Recurrent infection may also be facilitated by the ability of some
uropathogens to alter their morphology to evade the host
immune system and recolonize naïve regions in the urinary
tract more easily. One well-studied example is UPEC cell
filamentation, a process which occurs when bacterial cells
emerge from IBCs (Justice et al., 2006). This filamentous form
confers resistance to phagocytic engulfment (Justice et al., 2006)
and may provide enhanced adhesive properties (Andersen et al.,
2012). Another example is Proteus mirabilis, which can increase
flagellar density (Armbruster and Mobley, 2012). Recently,
Mickiewicz et al. reported that UPEC may also acquire a
reversible “L-form”, a cell-wall deficient phase that can evade
antibiotic treatments targeting the bacterial cell wall. In both
urine and a zebrafish model, UPEC could rapidly switch into this
form; the L-form was also the most prevalent in urine from older
rUTI patients (Mickiewicz et al., 2019).

Bacterial Resistance and Resilience
Antibiotic resistance is a key issue in recurrent UTI, and is the
most well-studied mode of treatment failure generally (Ho et al.,
2019; Yelin et al., 2019; Mattoo and Asmar, 2020). The overuse of
antibiotics has positively selected for strains with specific genetic
traits allowing them to survive and proliferate in the presence of
a single or even a class of antimicrobial compounds. In addition,
most of these bacteria have the necessary machinery for intra-
and inter-species transmission (e.g. through horizontal gene
transfer mechanisms), which can spread the selected traits
rapidly and boost the generation of multidrug-resistant
uropathogens (Ho et al., 2019; Mattoo and Asmar, 2020).

On the other hand, a much less well-understood phenomenon
involves resilience behaviors that provide temporary antibiotic
evasion in a sub-population of bacterial cells. The emergence of
resilient bacteria in an overall susceptible bacterial population might
therefore play an important role in the selection of fitter
uropathogens and subsequent recurrence. Several genetic and
non-genetic mechanisms might be involved in the development
of resilient profiles, which can be generally categorized as tolerance,
persistence and heteroresistance phenotypes (Carvalho et al., 2019).

One of the best studied bacterial resilient mechanisms
involved in rUTI are biofilms, which provide tolerance to
external stresses, such as antibiotic treatments and host
defenses (Olsen, 2015). Bacteria in polymicrobial UTI also
have the ability to protect one other from clinically relevant
antibiotics through the increase of tolerant/resilient phenotypes
in the bacterial community (de Vos et al., 2017). In contrast, the
mechanisms of persistence and heteroresistance are still largely
unexplored in the UTI context, as well as their impact in clinical
settings. However, the development of bacterial subpopulations
that are dormant/less metabolically active and/or display a
heterogenous (more resistant) phenotype might be crucial for
the success of a pathogenic community facing inconsistent and
unexpected environmental challenges (Kussell et al., 2005;
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
Carvalho et al., 2019). Although much remains to be learned
about this interesting class of treatment failure, bacterial
resilience may have a role in the development of chronic UTIs,
while resistance may play a more prominent role in recurrent
acute infections (Olsen, 2015). It is important to note that the
host context is likely to influence bacterial resilience phenotypes,
so studying this phenomenon in a human-cell (and one day,
patient-specific) environment will be important.

Host Factors
Bacteria are not the only players to alter their properties during the
host/pathogen interaction. Host urothelial cells can also change
upon first infection, a phenomenon observed in experimental
mouse models of chronic UPEC infection and in cell lines. These
changes influence host cell gene expression, shape, size, growth and
proliferation, and depending upon what is changed, may make the
urothelium more resilient, or more susceptible, to re-infection
(Mysorekar et al., 2009; Shin et al., 2011; O’Brien et al., 2016).

Other host factors, mainly immune-related, also play a
prominent role in the chronicity of rUTI, as the recurrence of
infection is frequently associated with a disturbed innate
immune response and/or insufficient adaptive immunity
(recently reviewed in (Lacerda Mariano and Ingersoll, 2020).
The reasons behind these events are still unclear and largely
unexplored due to the lack of knowledge about how the immune
response is triggered and develops in human UTIs, which can
differ significantly from the murine context. Indeed, up until
recently it was assumed that adaptive immunity was not involved
at all, due to early cumulative evidence from immune-deficient
mouse models lacking interleukins, immunoglobulins and/or T
lymphocytes, that could nevertheless resolve UTI as well as their
wild-type counterparts or even be resistant to infection
(Svanborg Edén et al., 1984; Ragnarsdóttir et al., 2008). A
revision of this view has paved the way for the development of
vaccines against UTI, some of which are showing promising
results (Prattley et al., 2020).

It has been increasingly reported, mainly in children, that a
genetic component might be involved, as polymorphisms and
mutations in innate immunity-related genes can increase
susceptibility to UTIs (Karoly et al., 2007; Tabel et al., 2007).
Additionally, an impaired immune response (Thumbikat et al.,
2006) as well as an exacerbated pro-inflammatory response to a
primary infection (Hannan et al., 2014), might favor recurrence
of infection. In fact, the activation of host immunity frequently
leads to severe injuries in the urinary mucosa/urothelium, which
become more prone to subsequent infections. In one way or
another, this common suboptimal and non-sterilizing immune
response may create the perfect environment for the occurrence
of rUTIs in an experienced host.
ANIMAL MODELS FOR STUDYING UTI

Brief History of Animals in UTI Research
Animals of many species were essential for biological scientific
experiments as early as the late 19th century, furthering our
understanding of physiology and human diseases. The earliest
May 2021 | Volume 11 | Article 691210
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mention of establishing infection in animal bladders was in 1873,
when Fels and Ritter inoculated canine bladders to induce cystitis
using urethral ligation (Keyes, 1894). Many tried to induce
infection in animals using pure cultures of microorganisms,
but ligation or a wound to the bladder was always necessary to
establish cystitis. In 1890, Schnitzler managed to induce cystitis
in rabbits without ligation using ‘Urobacillus liquefaciens
septicus’ [later defined as a member of the Bacillus cloacae
group (Archer, 1931)]. Later, it was reported that ‘coliform
bacillus’ could produce cystitis in rabbit kidneys and an
inflammatory response in the bladder mucosa (Lepper, 1921).
Animals continued to be important for UTI research, mainly rats
and rabbits, until the first murine model of UTI was described in
1967, as an experimental infection model for pyelonephritis
(Keane and Freedman, 1967).

Murine models eventually became established as a valuable
tool to study UTI, a trend which continues to this day. Mice were
considered superior to rats because they were slightly more
relevant to humans, with a greater abundance of globoseries
glycolipid receptors on urothelial cells for attachment (Hagberg
et al., 1983). Similar to humans, mice do not have a natural
vesicoureteral reflux, unlike other rodent models, so would be a
more physiologically accurate model for pyelonephritis
(Hvidberg et al., 2000). Mouse and human bladders also have
highly conserved uroplakins, which aid type 1 fimbriae
adherence and invasion by UPEC (Zhou et al., 2001). Recently,
female C57BL/6 mice urothelial cells were analyzed and classified
into eight clusters dependent on expression of cell-specific
markers. A novel urothelial cell type expressing Plxna4 was
discovered in the mouse bladder (Li et al., 2021) which is
conserved in humans and may play a role in host immune
response (Wen et al., 2010).

As mice do not naturally develop urinary infections,
instillation techniques were developed. Hagberg et al. described
the ascending, unobstructed UTI instillation in female CBA mice
with E. coli (Hagberg et al., 1983) which has since been adapted
for other uropathogens such as Proteus mirabilis and
Enterococcus faecalis (Jones et al., 1990; Shankar et al., 2001).
This instillation method helped replicate the attachment of
human-derived UTI isolates to murine urothelial cells which
was considered essential for understanding human infection.
CBA mice were preferred due to better bacterial attachment and
colonization; female CBA were favored as the anatomy of male
mice presented challenges for urethral inoculation (Hagberg
et al., 1983). Although UTI is more prevalent in females than
males (Foxman, 2010), little is known about sex differences in
UTI pathophysiology. To address this, a protocol for inducing
UTI in male mice using transurethral catheterization allowed
direct comparison between male and female C57B1/6 mice and
their host response (Zychlinsky Scharff et al., 2017). However, all
instillations via catheterization bypass the biology of ascending
UTI via the urethra (Barber et al., 2016).

Many different mouse models have been used for UTI
(Table 1). The mouse model offers systemic context and a
diverse range of genetic variability, allowing researchers to test
specific host factors and immune responses in transgenic and
knockdown mutants (Barber et al., 2016). ‘Germ free’ murine
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
models are also potentially an attractive option for modeling UTI
and the gut microbiota/UTI axis, allowing exclusive colonization
of certain pathogens or purposefully introduced commensal
species. For immunological purposes, naturalizing mouse
models can also be used to help translate research to humans
(Graham, 2021). The immune profiles of laboratory mice are
different from that of human as they have a low density of mature
T cells (Beura et al., 2016) and lower LPS sensitivity which could
lead to differences in pathogenesis and treatment responses in
humans (Graham, 2021). However, germ-free mice are more
expensive and need specialized equipment and training
(Kennedy et al., 2018). To our knowledge, however, there have
been no reports of naturalized mice used for UTI research.

Differences Between Mouse and
Human Models
Although murine models remain incredibly valuable for UTI,
they are expensive and labor-intensive to maintain and breed.
This precludes their use for high-throughput analysis,
particularly for drug screening and testing. Ethical guidelines
and applications have also slowed down animal research,
although scientists can navigate these obstacles with a
little patience.

Aside from these logistical issues, there is a deeper concern
that animal models do not always recapitulate the human
environment well enough to predict how disease physiology
works, nor how prospective treatments might behave in
human patients (Herati and Wherry, 2018), especially as mice
do not naturally acquire UTI. Accordingly, the use and accuracy
of animal models is a frequent discussion point among UTI
researchers, with Barber et al. reviewing their strengths and
limitations (Barber et al., 2016). Since then, further questions
about the accuracy of animal models, especially mice,
have arisen.

Host Bladder Physiological Differences
Murine and human bladders differ in certain anatomical
features and expression of biomarkers on the epithelial surface
(Figure 1). The mouse urothelium is typically 3-4 cells thick,
making it thinner compared with human, which is 5-7 cells thick.
The difference is due to the number of intermediate cells
(Khandelwal et al., 2009), which could create differences in
physiology and microenvironment between the upper and lower
intermediate cells. In addition, the basal cells of the human
urothelium have a higher expression of cytokeratin (CK) 5, 13,
14 & 17 compared with mice, whereas human umbrella cells have
a higher expression of CK7, 8, 18 & 20 (Laguna et al., 2006).

As the upper intermediate cells are more competent to
differentiate into umbrella cells compared with the basal-like
lower intermediate cells, there may be increased expression of
umbrella cell cytokeratins within the upper intermediate cells
compared with those below. Although studies are lacking, as
mice only have 1 or 2 intermediate cell layers, it is possible they
do not possess the full array of cell-specific biomarkers present in
human. Studying their differences could help establish whether
murine bladders can accurately recapitulate human UTI. Lui et
al. found differences in CD markers in the different layers of the
May 2021 | Volume 11 | Article 691210
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TABLE 1 | Mouse models used for UTI research.

Mouse
strain

Strain characteristics UTI work and findings

C57BL/6 Used in most studies (Timmermanset al.,
2017)

8- and 12-weeks post infection with Enterococcus faecalis, C57BL/6 mice had a lower incidence of infected
kidneys than SWR mice but a higher proportion of infected kidneys by week 8 compared with mouse strain A
(Guze et al., 1985)

Due to their popularity not all C57BL/6
strains are the same with differences
between C57BL/6J and C57BL/6N strains
(Simon et al., 2013; Kelmenson, 2016)

Demonstrated extremely low inflammation of the kidneys throughout the 14 day infection with E. coli 1677
(Hopkins et al., 1998)

Infected with either E. coli WT NU14 or its fimH− analogue. 6h post-infection, some WT E. coli formed
microcolonies in the bladder, while some adhered individually to the surface; fimH− bacteria did not attach
(Mulvey et al., 1998)

75% of infected bladders remained colonized with a fimH isogenic mutant of E. coli 2 weeks post-infection
(Mulvey et al., 2001)

Infected with E. coli UTI89 and CFT073. Intracellular bacterial communities (IBCs) present 6h post infection.
IBCs in C57BL/6J occasionally had more loosely defined edges (Garofalo et al., 2007)

Infected with E. coli asymptomatic bacteriuria strain VR50; after 18h, VR50 could colonize the urothelium but
not mutants for afimbrial adhesin (Beatson et al., 2015)

Infected with E. coli asymptomatic bacteriuria strain 83972 which ameliorated the effects of a 24h challenge by
a UPEC strain (Rudick et al., 2014)

CBA Large kidneys with proneness to
tubulointerstitial lesions (Rudofsky, 1978)

Evidence of virulence factor type 1 fimbriae in E. coli (Gunther et al., 2001)

Greater abundance of globoseries
glycolipid receptors on urothelial cells for
attachment of UTI pathogens compared
to humans (Hagberg et al., 1983)

Infected with E. coli UTI89 and CFT073. IBCs present 6h post infection. Similar IBC morphology compared with
other mouse strains (Garofalo et al., 2007)

More susceptible to UTI infection than
BALB/c (Hagberg et al., 1983), C57 and
C3H/HeN mice (Hagberg et al., 1983)

40 CBA/J mice were infected with E. coli CFT073. 313 bacterial genes were upregulated and 207
downregulated. Chemotaxis- and flagella motility-associated genes were downregulated in vivo compared to
in vitro (Snyder et al., 2004)

CF1 Albino white mice 11 different E. coli strains were analyzed for infectivity. Presence of C175-94 strain in bladder was found in 4/6
mice 4 weeks post-infection (Hvidberg et al., 2000)

Outbred to Charles River Laboratories in
1974 (Chia et al., 2005)

Have been used for EGFR gene knockout
studies so can be genetically manipulated
(Threadgill et al., 1995)

FVB/NJ Nephrotic syndrome-like characteristics:
albuminuria, cholesterolemia,
predisposition to increased T2 cell
response; no autoimmune origin (Maier
et al., 2007)

Infected with E. coli UTI89 and CFT073. IBCs present 6 hours post infection. Similar IBC morphology with other
mouse strains (Garofalo et al., 2007)

Ccr5P185L mutation results in resistance to
paracetamol (Timmermans et al., 2017)

Mx1s1 results in susceptibility to
myxoviruses such as Influenza (Grimm
et al., 2007)

High susceptibility to glomerular disease
(Uchio-Yamada et al., 2016)

Used in autoimmunity research due to
proneness to develop asthma-like disease
with high levels of IgE (Zhu and Gilmour,
2009)

C3H/HeJ IL1aY118_T119del results in resistance to
IL1a-mediated inflammation (Timmermans
et al., 2017)

Clears LPS-containing Gram-negative bacteria at a slower rate compared with C3H/HeN mice. There was no
difference for clearing Gram-positive bacteria such as Staphylococcus saprophyticus (Hagberg et al., 1984)
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TABLE 1 | Continued

Mouse
strain

Strain characteristics UTI work and findings

Tlr4P712H (missense mutation) results in
resistance to LPS-induced shock
(Timmermans et al., 2017)

When infected with E. coli 1677 (O6, type 1), mice had increased bacterial growth in the bladder after 3 days.
Inflammation response to LPS was poor and only slightly increased from Day 3 to day 14 post infection
(Hopkins et al., 1996)

LPS Resistant (HeJ-) (Tötemeyer et al.,
2003)

Infected with E. coli CI5 to develop prolonged UTI in the bladder. Assessed Forskolin as a potential treatment
for UTI (increases cAMP-driven exocytosis). Multiple intraperitoneal injections of 10mg/kg Forskolin at 6, 24 and
48 hours post infection reduced colonization of intracellular E. coli (Bishop et al., 2007)

C3H mice have mutation in Nramp1
G169D that makes them susceptible to
intracellular pathogens like
Mycobacterium, Salmonella & Leishmania
(Vidal et al., 1996)

Infected with E. coli UTI89 and CFT073. IBCs present 6h post infection. Similar IBC morphology compared with
other mouse strains (Garofalo et al., 2007)

Filamentation of E. coli UTI89 in C3H/HeJ mice is observed only in the later stages of infection. Could be due to
lack of functional TLR4 and resulting lack of inflammatory response (Justice et al., 2006)

C3H/OuJ C3H mice have mutation in Nramp1
G169D that makes them susceptible to
intracellular pathogens like
Mycobacterium, Salmonella & Leishmania
(Vidal et al., 1996)

When infected with E. coli 1677 (O6, type 1), infection became more severe with increased bacterial growth.
Unlike other strains in which inflammation gradually decreased, C3H/OuJ had increased inflammation in both,
kidney and bladder (Hopkins et al., 1998)

LPS sensitive (Hopkins et al., 1996)

C3H/HeN IL1aY118_T119del results in resistance to
IL1a-mediated inflammation (Timmermans
et al., 2017)

Cleared infection of LPS-containing Gram-negative bacteria faster than C3H/HeJ mice but not Gram-positive
bacteria Staphylococcus saprophyticus (Hagberg et al., 1984)

C3H mice have mutation in Nramp1
G169D that makes them susceptible to
intracellular pathogens like
Mycobacterium, Salmonella & Leishmania
(Vidal et al., 1996)

Infected with E. coli 1677 (O6, type 1). Demonstrated a high level of infection in the bladder over 14 days
compared with other mouse strains (Hopkins et al., 1998)

Had a significantly reduced bacterial load when infected with E. coli 1677 than C3H/HeJ and C3H/OuJ over 14
days (Hopkins et al., 1996)

Infected with E. coli UTI89 and CFT073. IBCs present 6h post infection. Similar IBC morphology compared with
other mouse strains (Garofalo et al., 2007)

Infected with E. coli UTI89 or K. pneumoniae TOP52 FimH strain, WT or genetically engineered fimH knockouts.
WT-infected bladders had significantly higher CFU counts in E. coli at 6h, 24h and 336h post-infection.
In contrast, WT K. pneumoniae showed no significant difference in bacterial count at 6h and 24h post-infection
and became significantly lower at 336h post-infection. K. pneumoniae fimH was important for intracellular
bacterial colonization (Rosen et al., 2008)

Infected with E. coli UTI89 using the technique described in (Olson et al., 2016). Mice were treated with
ceftriaxone, but a few mice were left with residual UPEC. When infection cleared, kidneys of treated mice
revealed to have multiple scars containing cellular infiltrate. Males, but not females, can develop 100%
penetrant robust ascending UTI presenting with renal abscesses and fibrosis, and fail to resolve it (Olson et al.,
2017)

DBA/1 &
DBA/2

DBA/1 are susceptible to immune
mediated nephritis (Xie et al., 2004)

Infected with E. coli 1677 (O6, type 1), DBA/1 and DBA/2 strains could resolve the initially high level of infection
in bladder and kidney (Hopkins et al., 1998)

DBA/2 lack surface expression of CD94/
NKG2A on NK cells known to be
expressed on most fetal NK cells (Vance
et al., 2002)

DBA/1 mice were infected with Pseudomonas aeruginosa for phage therapy applications and found there was
more enhanced killing of intracellular bacteria (reviewed in (Cieślik et al., 2021)

BALB/c Naturally resistant to prolonged UTI
(Bishop et al., 2007)

8- and 12-weeks post infection with S. faecalis GK (ATCC 23241), BALB/c mice had a significantly lower
incidence of infected kidneys compared with SWR mice (Guze et al., 1985)

Used in cancer research and when older
can develop renal tumors in males
(Noronha, 1977)

Infected with E. coli 1677 (O6, type 1), BALB/c mice had highest bacterial presence in the bladder and second
highest in the kidneys after 24 hours. After 14 days, infection decreased in both bladder and kidney (Hopkins
et al., 1998)

Infected with E. coli CI5 to determine the efficacy of Forskolin as a treatment for UTI (increases cAMP-driven
exocytosis). Intravesical 100µM Forskolin reduced colonization of intracellular E. coli by more than 75%
compared to saline controls (Bishop et al., 2007)
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human urothelium, with CD271 in basal cells and CD227 in
umbrella cells; however, there was no specific CD marker for
intermediate cells (Liu et al., 2012). The analogous situation in
murine urothelium has not been explored.

Another species difference involves the interstitial cells (IC),
which are recently described specialized cells residing in the
lamina propria and detrusor muscle associated with nerves
(McCloskey, 2010). Yu et al. found a high similarity in single-
cell types between human and mice bladders, but single-cell
transcriptomic mapping highlighted two novel IC expression
types specific to human bladders, namely ADRA2A+ andHRH2+.
These ICs may play a role in allergic reactions and nerve
conduction (Yu et al., 2019). Gavaert et al. also reported a
difference between mouse and human IC, with human ICs
manifesting increased contractile microfilaments, versus a
fibroblast phenotype in murine ICs (Gevaert et al., 2017). The
role of ICs in the host response during UTI is unknown but could
inform new therapeutic targets.

Urodynamics and voiding patterns also are different between
humans and mice. Both sexes of 10-week-old mice void more
frequently than humans, ~10 times a day vs ~6 times a day
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
(Chung and van Mastrigt, 2009; Aizawa et al., 2013), and also
more frequently at night (Ito et al., 2017). Unlike animals over
3 kg, including humans, which possess a scalable urinary
capacity and similar voiding durations, Yang et al. reported
that mice scarcely store urine at all, which would affect the
shape and stretching parameters of their bladders (Yang et al.,
2014). Contraction of the detrusor muscle in mammalian
bladders usually depends on activation of muscarinic-3 (M3)
receptors, whereas mice use activation of muscarinic-2 (M2)
receptors via an indirect mechanism (Ehlert et al., 2005; Zhou
et al., 2010), which could be important for accurate disease
modeling. Age may also play a role; e.g. differences were
reported in voiding and storage with 12 week “mature” mice
compared to “aged” 27-30 month C57BL/6 mice, with more
severe bladder dysfunction in aged male mice compared with
female. M3 receptor expression was downregulated in aged male
mice, whereas b2-adrenoceptor was downregulated in aged
females (Kamei et al., 2018). As aging is a risk factor in
developing UTIs (Foxman, 2010) yet younger mice are mostly
selected for UTI research, it is possible that youthful mouse
models are inaccurate for modeling UTI in our aging population.
TABLE 1 | Continued

Mouse
strain

Strain characteristics UTI work and findings

AKR Mainly used in cancer research and
immunology research to produce theta
AKR antigen (EMBL-EBI, 2021)

After infection with S. faecalis GK (ATCC 23241), AKR mice had established pyelonephritis after 8 weeks and
had the second highest bacterial load after 12 weeks in kidneys (Guze et al., 1985)

Infected with E. coli 1677 (O6, type 1), AKR mice could resolve the initially high level of infection in the kidneys
after 5-7 days but not in the bladder (Hopkins et al., 1998)

SJL Susceptible to experimental autoimmune
encephalomyelitis useful for multiple
sclerosis research (reviewed in (Croxford
et al., 2011)

SJL mice had a significantly higher proportion of infected kidneys than Strain A at week 8 and similar to other
mice (Guze et al., 1985)

Elevated T-cell level (Jain et al., 2015)

Infected with E. coli 1677 (O6, type 1), SJL strains showed a very low but constant level of infection in bladder
and kidney (Hopkins et al., 1998)

SWR Develop very severe polydipsia and pyuria
as a consequence of nephrogenic
diabetes insipidus (Kutscher and Miller,
1974)

When infected with S. faecalis GK (ATCC 23241), SWR mice had increased ascending UTI in the kidneys
compared to Strain A mice. No histological changes to the kidney were seen and the infection was cleared
effectively.
When infected with E. coli strain Yale, SWR mice had a significantly increased bacterial load in the kidneys with
more histopathological changes than Strain A mice over 12 weeks (Guze et al., 1987)Kidneys unresponsive to vasopressin

(Kutscher et al., 1975) 24h post infection with S. faecalis GK (ATCC 23241), SWR mice had increased bacterial growth compared to
strain A mice. Cortical abscesses and scars at week 1 and 4 respectively were significantly greater in SWR
mice than strain A mice. (Guze et al., 1985)SWR/J are resistant to obesity on high fat

diets (Leibowitz et al., 2005)
Infected with E. coli 1677 (O6, type 1), SWR mice showed very low but constant level of infection (Hopkins
et al., 1998)

A Suffer from specific complement deficiency
(Timmermans et al., 2017)

When infected with S. faecalis GK (ATCC 23241), Strain A mice exhibited lower kidney infection with no
significant histopathological changes compared with SWR mice. Infection was cleared effectively for both.

Within 12 weeks post infection with E. coli strain Yale, Strain A mice had a significantly decreased bacterial
count in the kidney and no histopathological changes. (Guze et al., 1987)

Macrophage defects (Timmermans et al.,
2017)

When infected with S. faecalis GK (ATCC 23241) cortical abscesses and scars were significantly reduced after
1 week in strain A mice compared to SWR mice. Strain A had a significantly lower proportion of infected
kidneys than all other tested mouse strains. (Guze et al., 1985)
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Host Pathogen Interactions and
Immunological Differences
Humans and mice also differ in some innate immunological
parameters. In UTI, the innate immune system is particularly
important for host recognition of pathogen-associated molecular
patterns (PAMPs) via pathogen recognition receptors (PRRs).
PRRs recognize pathogens and help regulate a quick pro-
inflammatory immune response, the mechanisms of which
have been extensively reviewed (Takeuchi and Akira, 2010;
Abraham and Miao, 2015). The predominant group of PRRs
are Toll-like receptors (TLRs). Differences in TLR structure and
function between humans and mice could influence how the
innate immune system responds to a particular UTI pathogen,
which could influence model accuracy.

There are 13 members of TLRs and between humans and
mice; TLR1-9 are present in both, TLR10 is found in only in
humans and TLR11-13, only in mice (Behzadi and Behzadi,
2016). In the urothelium, TLR2, 4, 5 and 11 (in mice) are the
most competent TLRs against UTIs (Song and Abraham, 2008;
Behzadi and Behzadi, 2016).

TLR4 is the most well-studied of the TLRs. TLR4 forms
complexes with CD14 and MD-2 which help bind bacterial
lipopolysaccharide (LPS) to initiate signaling for innate
immune response (Vaure and Liu, 2014). LPS is displayed
abundantly on the outside of Gram-negative bacteria such as
UPEC, highlighting the importance of bacterial TLR4
interactions in the urinary tract. Despite TLR4 being present in
both species, noticeable differences exist (reviewed by Vaure and
Liu, 2014), with only a 57% similarity between their MD-2
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
proteins; this makes human MD-2 more cationic than mouse
MD-2 which further affects the activation of TLR4 signaling
(Vasl et al., 2009). The hypervariable region of TLR4, where
MD-2 complexes with TLR4, has only 48% similarity between
humans and mice, which again might lead to differences in how
the host responds to infections. To date, the impact of these
differences in TLR4 in human and mouse UTI has not
been investigated.

TLR2, expressed in both species, has been shown to be a
signaling receptor for bacterial peptidoglycan, important for
recognition of Gram-positive bacteria (Takeuchi et al., 1999),
and its ability to form heterodimer complexes with TLR1 and 6
broadens its spectrum to recognize other PAMPs (reviewed in
Behzadi and Behzadi, 2016). TLR5 and 11 are similar in that they
recognize UPEC PAMP flagellin (Hatai et al., 2016). As TLR11 is
only expressed in mice, mice might have a higher capacity to
recognize flagellin from UPEC, which should be kept in mind
when studying this bacterial parameter.
Bacterial Differences
Bacterial phenotypes differ between mouse and human
infections, likely influenced by differences in environment,
bacterial development and growth. For example, the
importance of some bacterial virulence factors seems to be
completely different between human cell lines and animal
models (Alamuri et al., 2010). A recent paper explored the
gene expression of three UPEC strains isolated from cases of
uncomplicated UTI; gene expression between human and mouse
FIGURE 1 | Comparison between human versus mouse urothelium. In human bladder, basal cells have higher expression of CK5, 13, 14 and 17, intermediate cells
are stacked in 5-7 layers (vs 3-4 in mice), and umbrella cells have higher expression of CK8, 7, 18 and 20, as well as a more cationic MD-2 protein associated with
the TLR4, while mice have a high expression of TLR11 (which is not present in humans). Urine is less concentrated in humans, which also have higher storage
capacity and lower urination frequency compared with mice.
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UTI was highly correlated, but 5.4% of analyzed genes were
differentially regulated with 30 genes upregulated and 145
downregulated in human UTI (Frick-Cheng et al., 2020). Most
of the downregulated genes were involved in anaerobic
metabolism, so the authors hypothesized that the human
bladder is more oxygenated than the murine. The presence
and full effect of this physiological difference on bacterial
phenotypes has not been explored.

Species differences in urine composition might also
contribute to differences in bacterial behavior. Mouse urine has
been shown to change the gene expression of UPEC when
compared with human urine (Hagan et al., 2010). This study
found that type 1 fimbrial genes – essential for bacterial
adherence in murine models – were not expressed in 6 of 8
clinical isolates in human urine, suggesting that murine models
impart a different expression phenotype. Mouse urine is more
concentrated than that of larger mammals, which can affect
UPEC biofilm production and cell morphology. FliC, a virulence
factor encoding UPEC flagellin, was shown to be downregulated
in mouse urine and upregulated in human urine (Snyder et al.,
2004; Berry et al., 2009). On the other hand, filamentation, which
is important for UPEC virulence, occurred in both highly
concentrated human and mouse urine (Klein et al., 2015).

Murine models have been used to study antibiotic efficacy.
Chockalingham et al. infected immunocompetent Balb/C mice
with UPEC strain CFT073 to investigate resistance development
against ampicillin, ciprofloxacin and fosfomycin, concluding that
the mouse model was not suitable for studying resistance
patterns, but could be useful for studying persistence
(Chockalingam et al., 2019).

Other Animal Models for UTI
Porcine models have recently been mooted as an attractive
species to model pathogenesis of UTI. They have more
conserved homology and structural motifs to humans
compared with mice, which may make it a more accurate
model particularly for immunological studies (Dawson et al.,
2017). Thus far pigs have been mainly used for research into
pyelonephritis and renal damage, especially vesicoureteric reflux
and renal scarring in infants and establishment of upper UTI
(Coulthard et al., 2002). However, until recently pigs had not
been used to model cystitis. In 2019, Nielsen et al. reported a
UPEC model of infection using a clinical isolate UTI89 to sustain
an infection for up to 23 days in female pigs (Nielsen et al., 2019).
Interestingly, as mentioned above, no intracellular UPEC were
seen as has been widely reported for UTI89 in mice. The porcine
model, as a large mammal, shares similarities in urine density
and anatomy with humans (Nielsen et al., 2019). However, large
animal models are particularly expensive. What’s more, the
scope for genetic manipulation in pigs has yet to match that of
mice (Barber et al., 2016).

The nematode Caenorhabditis elegans has been used for in vivo
infection studies that include various UTI pathogens (Lavigne et al.,
2008; Szabados et al., 2013; Engelsöy et al., 2019). Very recently,
Hashimoto et al. demonstrated that UPEC mutants with defective
iron acquisition-related virulence factors were a significant factor in
survival of C. elegans (Hashimoto et al., 2021). However, as a model,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
C. elegans has only been useful for survival assays and cannot be
explored as a physiological model as it lacks a urinary system.
Zebrafish, a popular model for real-time visualization of infections,
also lack a urinary system, but has recently been used to determine
in vivo L-form switching of UPEC and its role in recurrent UTI
(Mickiewicz et al., 2019).

Non-human primate (NHP) models benefit from their high
similarity with humans. To our knowledge there are no papers
describing an NHP model for UTI (Chen et al., 2019), but they
have been used in the past for UTI vaccine studies (reviewed in
(O’Brien et al., 2016) and viral studies (reviewed in (Estes et al.,
2018). However, their expense, ethical issues and specialized
facilities pose significant drawbacks.

In summary, animal models have enabled crucial advances,
but relevant human-related models are still needed to fully
understand UTI in patients. These models should provide
complementary valuable insights into the host-pathogen
interactions and allow the development of more human-
relevant therapeutic approaches.
IN VITRO HUMAN CELL-BASED MODELS

The in vitro recapitulation of the human bladder environment
and the reconstitution of the urothelium (or even the organ) is
highly desirable because of the advantages such models present
compared with animal models (see Section 3) and their potential
for studying a wide range of conditions, from UTIs to bladder
cancer, tissue regeneration/transplant and the effect of drugs and
xenobiotics that contact the urinary tract. Three major strategies
have been employed: i) cell monolayers, using commercially
available cell lines, cells recovered from urine or derived from
biopsies/explant cultures; ii) tissue/organ cultures from patients;
and iii) 3D structures/organoids that mimic the urothelium after
induced cell stratification and differentiation. An overview of the
different bladder models used in UTI and non-UTI related
research is presented in Tables 2, 3, respectively.

As human bladder cell lines are easy to maintain in 2D and to
manipulate using standard techniques, cell monolayer culture
remains one of the most attractive methodologies. There are also
an increasing variety of well-established human bladder cell lines
that can be purchased; e.g. the American Type Culture Collection
currently provides 14 certified human bladder cell lines (4 normal
and 10 cancer). Those from cancer sources are among the most
popular, mainly HTB-9 and HTB-4, due to their fast growth and
easy manipulation. Apart from their obvious relevance for cancer
studies, the data obtained with these cells in UTI research should
be carefully interpreted due to the differences between normal and
cancer cells. Moreover, these cells cannot acquire a native three-
dimensional urothelial architecture. On the other hand, normal
cells are either immortalized, which may compromise cell
differentiation (Georgopoulos et al., 2011), or are derived from
human samples (urine or biopsies), maintaining their ability to
stratify and differentiate. In the latter case, cells can only be used
during a limited number of passages so their routine use requires
a large amount of material. Also, donor variation may
affect reproducibility.
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TABLE 2 | In vitro human bladder cell-based models used for UTI studies.

Model Origin Stretch Flow Urine Agent Additional
info.

Ref.

Cell lines (monolayers)

PD07i Pediatric human bladder epithelial cells
immortalized using the human papillomavirus
type 16 E6/E7

N Y Y E. coli Flow chamber
with shear
stress (fluid
replaced each
2 min)

(Andersen et al., 2012)

N N N (Klumpp et al., 2006; Berry
et al., 2009)

N N N Organotypic
raft cultures in
semisolid
medium

(Thumbikat et al., 2009)

N Y Y CellASIC Onix
microfluidics
system with
M04S-03
plates

(Iosifidis and Duggin, 2020)

ATCC® HTB-9 Human bladder epithelial cells 5637, from
grade II carcinoma

N N N E. coli (Eto et al., 2006; Miao et al.,
2015; Miao et al., 2017; Li
et al., 2019; Wang et al., 2019;
Patras et al., 2020; Li et al.,
2021)

N N Y GBS* (Tan et al., 2012)

N N N (Patras et al., 2020)

N N N C. albicans (Coady et al., 2018)

ATCC® HTB-1 Human bladder epithelial cells J82, from
transitional cell carcinoma

N N N E. coli (Langermann et al., 1997)

ATCC® HTB-4 Human bladder epithelial cells T24, from
transitional cell carcinoma

N N N E. coli (Li et al., 2019; González et al.,
2020)

N Y N Flow chamber
with shear
stress

(Zalewska-Piątek et al., 2020)

N N N GBS* (Ulett et al., 2010; Tan et al.,
2012)

N N Y

N N N LPS from E.
coli and
flagellin from
S. typhimurium

(Smith et al., 2011)

EJ (MGH-U1) Human bladder carcinoma

Finite normal human
urothelial (NHU) cells

Biopsies of the human ureter and bladder

UROtsa Primary culture of normal human urothelium
(ureter), immortalized using the simian virus 40
(SV40) large T antigen

N N N RNAse6 from
E. coli

Cytotoxicity
tests

(Becknell et al., 2015)

TEU-1 and/or TEU-2 Primary human urothelial cells (from ureter)
immortalized using human papillomavirus type
16 E6E7

N N N E. coli (Klumpp et al., 2001; Klumpp
et al., 2006; Billips et al., 2007;
Billips et al., 2008)

SR22A Primary bladder urothelial cells obtained from a
biopsy of a patient with interstitial cystitis

N N N E. coli (Klumpp et al., 2006)
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In general, the previously mentioned models generate one of
two extremes, either highly differentiated primary cultures with
lower serial growth potential, or undifferentiated cultures with
higher serial growth potential. Importantly, regardless of the cell
source, cells cultured in monolayers do not display growth,
architecture and physiology comparable to the human
urothelium, limitations that are particularly relevant to UTI
(Smith et al., 2011).

In contrast, a more biologically relevant model is organ/
explant culture, where intact specimens of tissues are cultured
for a time. While these may maintain an accurate 3D cell
architecture, stratification and differentiation status, the
method is time-consuming, requires a ready availability of
fresh tissue, and again, may exhibit inter-sample variability.
Also, there is an increasing probability that stromal and
urothelial cells will undergo unwanted mixing over culturing
time, with the overgrowth of stromal cells relative to urothelial
(Baker et al., 2014). Moreover, the lumen of these models is
commonly exposed to air, which does not happen in the bladder
in situ, and may affect the maintenance of cell differentiation
and/or polarization (Visňjar and Kreft, 2013).

Due to the drawbacks of these strategies, other 3D
experimental bladder models are emerging which attempt to
biomimic the human urothelium using stem- or stem-like cells
subjected to phases of propagation/expansion and stratification/
differentiation. Some of them were even patented (Cross, 2003).
Recently, Kim et al. reported the most complex 3D bladder
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 12
multilayered model, mimicking an organized architecture of a
mature organ through the assembly of a urothelium surrounding
stroma and an outer muscle layer (Kim et al., 2020).

Interestingly, apart from the 3D organoid described by Horsley
et al. in 2018, all the aforementioned in vitro models were not
exposed to urine, or if so, only for a few hours, up to a day –
although a few studies report the use of urine components (e.g.
ammonia, urea or water). This is important, since the exposure of
the apical urothelial surface to urine seems to be essential for proper
differentiation and adequate mucopolysaccharide production
(Horsley et al., 2018). Also, bacterial behavior and gene
expression is affected by the presence of urine (Hagan et al., 2010;
Reitzer and Zimmern, 2019); as urine is the natural context in which
these microorganisms operate, models that do not include urine will
be incomplete.

Notwithstanding the lack of a cellular immune response and
the systemic host background that only in vivo studies can
provide, it is expected that human-based in vitro biomimetic
urothelium constructs with more physiological aspects will
accelerate drug discovery for bladder diseases and even reduce
the use of animal models (Baker et al., 2014). In a UTI context,
promising platforms already exist for the study of host-pathogen
interactions, but they lack key parameters which have a profound
impact on normal bladder physiology and may dramatically
influence the experimental results obtained. Below we review
these key aspects and why they should be included in the next
generation of models.
TABLE 2 | Continued

Model Origin Stretch Flow Urine Agent Additional
info.

Ref.

3D structures

HTB-9 organoid ATCC® HTB-9 (5637) cells N N N E. coli Cells under
microgravity
conditions

(Smith et al., 2006)

HBEP and HBLAK
organoid

Human bladder epithelial progenitor cells and
spontaneously immortalized (non-transformed)
counterpart, derived from the trigone region of
the bladder. Available from CellNTec

N N Y E. faecalis (Horsley et al., 2018)

Multilayered bladder
rounded assembloid

Using normal human bladder tissue samples
and stem cells; stroma components;
fibroblasts; endothelial and smooth muscle
cells

induced
contraction
of the
muscle
layer

N N E. coli Bladder tumor
assembloids
were also
created

(Kim et al., 2020)

Others

Urinary tract
epithelia cells

Upper and lower urinary tract urothelial cells
from human urine (mixture)

N N N E. coli Assays
performed in
PBS
suspensions

(Svanborg Edén et al., 1976)

Asymmetric Unit
Membranes

Apical surface of human bladders N N N (Wu et al., 1996)

Bladder tissue
sections

Surgical pathology and autopsy files N N N (Langermann et al., 1997)

Urothelial and
squamous cells

Fresh urine from patients N N Y (Martıńez-Figueroa et al., 2020)
May 202
*GBS, Group B Streptococcus, also known as Streptococcus agalactiae. Y, yes; N, no, refer to the use of urine, stretch or flow in these models.
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KEY FEATURES OF THE HUMAN
BLADDER THAT SHOULD BE
RECAPITULATED IN ADVANCED HUMAN-
CELL MODELS, AND MODELS THAT
ATTEMPT THEM

Advanced in vitro models more closely approximating the
human urothelium would be valuable for assessing the cellular
changes that occur with infection. Such models would ideally
incorporate at least four unique structural and biophysical
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 13
aspects theorized to be important for host-pathogen
interactions including: (1) tissue architecture; (2) apical urine
exposure; (3) dynamic fluid flow; and (4) urothelial stretch.
These key features are described in further detail below, in the
context of unique bladder physiology, relevance to UTI, and
current models or platforms of relevance.

Tissue Architecture
As described above, the human bladder is lined by a unique
transitional urothelium formed of approximately 5-7 layers of
cells (Figure 1) (reviewed in Khandelwal et al., 2009). Terminally
TABLE 3 | Relevant in vitro human cell-based models not used in UTI studies.

Model Origin Studies Ref.

Urothelial cells Bladder and ureters of patients
undergoing urological operations

Xenobiotic studies (Flieger et al., 2008)

Tissue specimens

Exfoliated cells Human urine (Belik et al., 2008; Dörrenhaus et al., 2000)

Finite normal human urothelial
(NHU) cells (potential for in
vitro stratification and
differentiation)

Biopsies/explants of histologically-normal
bladder, renal pelvis and ureter, obtained
at surgery from adult and/or pediatric
patients

Development of
models/
characterization of
bladder epithelium

(Rheinwald and O’Connell, 1985; Hutton et al., 1993; Southgate
et al., 1994; Varley et al., 2005; Cross et al., 2005; Southgate et al.,
2007; Rubenwolf et al., 2009; Rubenwolf et al., 2012; Wezel et al.,
2013)

Urothelial cells Biopsies of dysfunctional bladder (Southgate et al., 2007)

Urine of newborn children (Sutherland and Bain, 1972)

From patients with interstitial cystitis and
healthy controls (stretch experiments at
20% strain)

(Sun et al., 2001; SUN and CHAI, 2004)

Urine-derived stem cells Urine from healthy adult men (Lang et al., 2013)

Human induced pluripotent
stem cells (hiPSCs) derived
from mature bladder
urothelium

hiPSC line FF-PB-3AB4 established from a
healthy donor’s peripheral blood
mononuclear cells (PBMCs)

(Suzuki et al., 2019)

Normal human transitional
cells

Ureter and embryonic bladder explants (Reznikoff et al., 1983)

In vitro stratified cell layers Biopsy of lower urinary tract from adult
patients undergoing open tumor surgery

(Feil et al., 2008)

Bladder irrigation fluids (with exfoliated
cells)

(Nagele et al., 2008)

Anatomically normal bladder and ureteral
mucosa of children undergoing open
kidney or bladder surgery

(Sugasi et al., 2000)

UROtsa cell monolayers (with some
cytodifferentiation), available from
ThermoFisher

(Petzoldt et al., 1994; Petzoldt et al., 1995; Rossi et al., 2001)

Organ/Tissue culture Bladder, renal pelvis and ureter of patients
undergoing urological surgery with benign
or no condition

(Knowles et al., 1983; Scriven et al., 1997)

Bladder from cadavers and deceased
heart-beating brain-stem dead donors

(Garthwaite et al., 2014)

3D multilayered urothelium
(with cell differentiation),
dynamic cultures mimicking
the urine flow

Human urine-derived stem cells, urothelial
cells and smooth muscle cells

(Wan et al., 2018)

Organoids and spheroids for cancer studies Reviewed in (Wang et al., 2017; Vasyutin et al., 2019)
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differentiated umbrella or facet cells top the intermediate cell
layer and face outward into the bladder lumen in contact with
urine; these unique and specialized cells are formed by fusion of
intermediate layers below, are very large but flattened when
stretched, and form a barrier to urine despite their highly
dynamic environment. Turnover is slow under healthy
conditions (on the order of weeks), but when an umbrella cell
is exfoliated, the urothelium ensures replacement through the
fusing and differentiation of intermediate cells, which can be
replaced in turn via the basal progenitor layer. Umbrella cells
deploy a protective apical array of asymmetric unit membrane
plaques comprised of uroplakin proteins (Wu et al., 2009). The
urothelium also elaborates a mucopolysaccharide-rich layer of
glycosaminoglycans (GAG) which offers additional protection,
enhancing the urothelial barrier against urine (Janssen et al.,
2013). Indeed, the urothelium is one of the strongest epithelial
barriers in vivo (Eaton et al., 2019) with native tissue trans-
epithelial electrical resistance (TEER) values exceeding 3000
W*cm2 (Cross et al., 2005). The urothelium is not a passive
barrier but is responsive to biomechanical cues, serving as a
“mechanosensory conductor” as distention of the bladder
stretches the urothelium during filling (Winder et al., 2014).

Given that the urothelium exhibits differential expression of
specific markers throughout its layers, recapitulating the
stratified human urothelium with appropriate markers and
functions is critical for in vitro models of human bladder
health and disease, and has particular relevance for UTI. The
hypothesis that deep “quiescent intracellular reservoirs” in the
intermediate cell layer may act as long-term reservoirs for
recurrence requires a thicker multi-layer structure for studying
this phenomenon. Moreover, as infection causes copious apical
shedding, more than three layers are useful for retaining
urothelial structure during bacterial insult. At the same time,
studying adhesion properties of uropathogens, as well as innate
epithelial response, ideally requires a human umbrella cell-
bacteria interface.

Strategies to Induce or Improve Differentiated
Multicellular Architecture
Much of our understanding of stratified urothelial architecture
comes from animal models and human bladder biopsies (Jost
et al., 1989), but recreating this architecture in vitro is not trivial.
The following trends emerged as we surveyed the literature to
elucidate what factors are critical for achieving multiple cell
layers alongside umbrella cell differentiation in human-
cell models.

Cell Source
Three-dimensional, multilayer urothelial organoid development
in vitro has been reported using various cell sources: patient-
derived cells from biopsies and surgical specimens, either by
enzymatic dissociation or explant (e.g., Southgate et al., 1994;
Daher et al., 2004; Cross et al., 2005; Zhang and Atala, 2013)
immortalized cell lines (e.g., UROtsa used by Rossi et al., 2001);
commercial primary cells or spontaneously immortalized cells
(HBEP and HBLAK used by Horsley et al., 2018); human urine
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stem cells (Lang et al., 2013); and iPS cells (Suzuki et al., 2019).
However, not all recapitulate the proper stratification and
necessary hallmarks of the apical-most layer of umbrella cells,
nor were used for infection. Most models report at least some
important features, such as uroplakins, cytokeratins, and/or
junctions, and include some form of visual evidence of a
multilayer structure (e.g., electron or confocal microscopy). It
remains unclear whether one cell source is superior to another,
since there is no standard approach to urothelial differentiation
either in terms of method or assessment. The ideal cell source
would be readily available (either commercially and/or through
well-described isolation techniques) and lead to reproducible
differentiation in culture under defined conditions.
Organoid vs. Spheroid Culture
Although there is some confusion about the terms, organoids are
usually defined as in vitro culture models that replicate features
of native tissue organization, whereas spheroids are a specific,
spherical form of organoid (Fang and Eglen, 2017; Vasyutin
et al., 2019). While each approach has its advantages and
limitations, a flattened organoid approach may be more
desirable for UTI models, as the lumen of spheroid cultures
would be difficult to access for inducing infection and readouts of
interest beyond imaging (e.g., secreted factors, barrier function
assays). Flattened organoids, on the other hand, can establish 3D
tissue architecture on a 2D surface allowing for ease of infection,
imaging, sampling of media, barrier function (permeability
assays or TEER), and the addition of other biophysical cues
such as flow and/or stretch as described below.
Manipulation of Soluble Factors and Media Additives
It is well-established that “high” calcium (2-4 mM) is a major
factor for in vitro stratification and differentiation of human
urothelial models (e.g., (Southgate et al., 1994; Rossi et al., 2001;
Daher et al., 2004). Other additives have been used, such as FGF-
7 (Tash et al., 2001), FGF-10, PPAR-g agonists, and/or EGFR
inhibitors (Suzuki et al., 2019). Urine exposure may also be
required for umbrella cell differentiation (Horsley et al., 2018).
Additional systematic studies of necessary factors may facilitate
convergence towards a standardized media for urothelial models.
Culture Platform
Beyond the liquid environment, the solid substrate on which cells
are cultured can greatly influence 3D tissue architecture.
Substrate mechanical properties have been shown to strongly
affect cell structure and function, which may influence the
optimal choice of materials (Janmey et al., 2020). The most
prevalent platforms have been tissue culture plastic (e.g., well
plates) and Transwell® inserts or similar porous membrane
culture systems. The pore size typically used, when reported, is
0.4-0.45 µm diameter. Pore size and pore density may be critical
factors in urothelial stratification and differentiation, but to our
knowledge have not been systematically studied. Stratification is
enhanced on porous membrane substrates, leading to increased
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urothelial tissue thickness and more uniform stratification (Cross
et al., 2005; Suzuki et al., 2019) compared with well plates.
In addition to providing nutrients to both sides of the tissue
which could allow thicker layer formation, polarization can be
achieved by providing differential cues on each side of the
microporous membrane. Thus, a microporous substrate may
be a requirement for advanced 3D urothelial organoid models.
However, Transwells and similar platforms are static cultures
not readily adaptable to dynamic biomechanical cues such as
fluid flow and stretch. These advanced platforms will be
described later.

Extracellular Matrix
The extracellular matrix (ECM) can influence cell adhesion,
proliferation, differentiation and function (Hynes, 2009; Yue,
2014; Chaudhuri et al., 2020). Collagen IV is the ECM coating of
choice across multiple models, and bestowed accelerated
outgrowth of urothelial explants compared with laminin or
fibronectin (Daher et al., 2004). Beyond substrate coatings,
more complex ECM scaffolds may be beneficial for 3D
urothelial model development. The Atala lab has performed
extensive studies of decellularized scaffolds, including the
bladder, and has described several approaches to 3D urothelial
culture on ECM scaffolds (Zhang and Atala, 2013). Such scaffolds
are naturally porous and provide more complex environmental
cues such as multiple ECM components and the topography
present in native tissue. Whether decellularized bladder
or similar scaffolds enhance urothelial stratification and
differentiation compared with other culture substrates remains
to be determined.

Co-Culture
While many urothelial models are derived from a single cell
source, some studies have co-cultured other cell types. The most
common addition is fibroblasts (Vasyutin et al., 2019), although
endothelial cells (Sharma et al., 2021) and smooth muscle cells
have also been used (Zhang and Atala, 2013). Additional cell
types found in the underlying stroma may provide important
cues that influence urothelial proliferation, architecture and
differentiation (Southgate et al., 1994). A challenge with co-
culture is the inevitable increase in biological variability;
alternative approaches such as defined soluble factors may be
preferred when cross-talk between cell types is not critical to
the study.

Apical Urine Exposure
The urine microenvironment is an important consideration for
UTI models from both the host and pathogen side. To our
knowledge only two studies report the use of long-term urine
exposure (>24 h) in urothelial models. One model implemented
commercially available cells (primary HBEC and spontaneously
immortalized HBLAK), differentiation media, and pooled urine
in Millicell Transwell inserts (Horsley et al., 2018). Urine was
introduced into the insert (apical side of the cell culture) 24 hr
after initiating differentiation of the confluent monolayer and
maintained for several weeks. The authors reported that urine
was necessary for stratification, differentiation of the umbrella
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cell layer and GAG elaboration. This model was also used to
study infection with Enterococcus faecalis, resulting in urothelial
sloughing and formation of intracellular colonies previously
observed in human patient cells. Second, a recent pre-print
described a bladder-on-chip system with human bladder
epithelial cells, bladder microvascular cells and neutrophils in
the Emulate microfluidic platform with flow and mechanical
stretch (Sharma et al., 2021). The bladder epithelium was
exposed to diluted urine in the co-culture, including during
infection. However, the effect of urine on model development
and infection was not explicitly studied. In another recent
example, a microfluidic platform with the human bladder
epithelial cell line PD07i was used in experiments to infect
UPEC with short-term (20 h) urine exposure under flow
(Iosifidis and Duggin, 2020).

Given that few human urothelial models use urine, much
remains to be learned about this key variable. In vivo, the
umbrella cells are exposed to urine and form a tight barrier
against it, while being nourished by the underlying vasculature
and other cells/tissue in close proximity. Although urine may be
necessary for umbrella cell differentiation in vitro, it is a harsh
environment and cannot be the sole fluid used, even short term.
For an ideal in vitro model, the apical surface of the urothelium
would be exposed to urine while the basolateral compartment
would be supported by an appropriate differentiation media.
This is why platforms incorporating a microporous substrate
with apical and basal compartmentalization will be more suitable
for advanced urothelial models. The simplest implementation
would be a Transwell® or similar permeable membrane systems,
such as described by Horsley et al., 2018. Other parameters to
consider are the timing of urine introduction, acclimation to
increasing concentrations of urine over time, and donor
characteristics (sex, age, any diseases or conditions that may
alter urine composition). More advanced models may implement
platforms with fluid flow, such as systems described in the
following sections.

Although existing static organoid models can capture some of
human urothelial physiology, many biological questions
probably can be answered only with a model incorporating
additional biophysical aspects, including fluid flow and stretch,
which are present in the human bladder and likely affect both
normal physiology and infection dynamics. In vitro models that
incorporate flow and/or stretch have been developed, but very
few for the human bladder. We describe below how flow and
stretch are important for both normal bladder function and UTI,
and how incorporating these biomechanical cues into an in vitro
model would be a valuable addition.

Dynamic Fluid Flow
Fluid Flow in the Bladder
Given the shape and compliance of the bladder, fluid flow during
voiding is extremely complex and non-uniform. Computational
fluid dynamic (CFD) simulations of flow in the bladder-urethra
system revealed that the peak shear stress experienced by cells is
approximately 3 dyn/cm2 (Jin et al., 2010) – a moderate level
compared with that found in the vascular system, for example.
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However, this level is only encountered by cells in the urethra,
whereas the bladder umbrella cells experience extremely low
shear, perhaps well below the levels required to activate shear-
induced bacterial adhesion mechanisms. While this does not
discount the hypothesis that flow-induced bacterial adhesion
plays a role in bladder UTI, it does suggest that umbrella cells are
perhaps less affected by this process in vivo, although it may be a
likely mechanism in the urethra. A CFD-based study by (Ates ̧çi
et al., 2014) produced similar results but in terms of velocity
profiles within the bladder and urethra. Although this simulation
data cannot be directly extrapolated to assign shear stress values
experienced at the bladder wall by umbrella cells, it indicates that
it is lower than in the urethra.

Aside from fluid flow possibly affecting uropathogenic
bacterial adherence, it may also influence other virulence
behaviors including the propensity of UPEC to take on a
filamentous form that increases virulence, adhesion, invasion
and escape from immune surveillance (Justice et al., 2006;
Andersen et al., 2012). This may be particularly relevant for
biofilm formation (Weaver et al., 2012). In addition, a number of
studies have shown that microfluidic flow provides physiological
cues that guide tissue architecture; as one example, in an
organotypic kidney model, fluid flow altered cell shape, protein
expression and transport to better approximate in vivo
organization (Jang et al., 2013). Although currently under-
studied in the context of bladder cell culture models, flow even
with low shear stress could be an important cue to enhance
urothelial organoid development in vitro as well as subsequent
studies of infection. Models of the urethra with higher shear
could provide insights into mechanisms of bacterial adhesion
and how uropathogens migrate into the bladder. Examples of
models incorporating fluid flow are provided below.

Models Incorporating Fluid Flow
Fluid flow has been incorporated into numerous in vitro model
organ systems as a means for fluid and nutrient exchange, waste
removal, to maintain cellular survival and tissue architecture, or
to induce cellular differentiation (Baudoin et al., 2007; Carraro
et al., 2008; Fritsche et al., 2009; Douville et al., 2011; Cheng et al.,
2012; Park et al., 2012; Agarwal et al., 2013; Kim and Ingber,
2013; Torisawa et al., 2014; Zhang et al., 2014; Henry et al., 2017;
Kasendra et al., 2018; Shin et al., 2019; Sidar et al., 2019;
Azizipour et al., 2020). Many liver and kidney models use fluid
flow to maintain tissue structure, deliver drugs, measure
reabsorption, or carry out metabolites for ADME-tox studies
(Sin et al., 2004; Sivaraman et al., 2005; Kane et al., 2006; Lee
et al., 2007; Chao et al., 2009; Mahler et al., 2009; Toh et al., 2009;
Jang and Suh, 2010; Novik et al., 2010; Snouber et al., 2012;
Legendre et al., 2013; Esch et al., 2015; Lee et al., 2017;
Maschmeyer et al., 2015; Vedula et al., 2017; Zhang et al.,
2017; Bale et al., 2019; Homan et al., 2019; Jalili-Firoozinezhad
et al., 2019; Tan et al., 2020). Disrupted flow patterns have been
applied to induce damage that mimics tissue injury in lung and
heart models (Huh et al., 2007; Giridharan et al., 2010; Huh et al.,
2010; Khanal et al., 2011; Tavana et al., 2011; Nguyen et al.,
2015), and microfluidic flow systems have been created to study
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muscle contractility (Grosberg et al., 2012), endothelial
vascularization (Shin et al., 2004), pulmonary thrombosis (Jain
et al., 2018), tumor-vascular invasion (Nguyen et al., 2019),
blood-brain barrier (Booth and Kim, 2012), nerve injury (Park
et al., 2013; Tsantoulas et al., 2013) and neuronal networks (Shi
et al., 2013; Xiao et al., 2013; van de Wijdeven et al., 2018).

Microfluidic lung and gut models have also been used to
study infection by bacteria and viruses. For example, fluid flow,
either alone or together with cyclical strain, enabled not only
proper tissue differentiation but also enhanced invasion by the
infecting organism (Zhu et al., 2009; Kang et al., 2015; Barr et al.,
2015; Benam et al., 2016; Villenave et al., 2017; Ortega-Prieto
et al., 2018; Sunuwar et al., 2020; Tang et al., 2020; Thacker et al.,
2020; Baddal and Marrazzo, 2021). Fluid flow led to upregulated
invasion of colonic epithelium by Shigella bacteria (in the
presence of peristalsis-like mechanical strain) (Grassart et al.,
2019), increased epithelial barrier function in a lung epithelium/
macrophage influenza virus co-infection model (Deinhardt-
Emmer et al., 2020), and enhanced infection of alveolar or
airway epithelial cells by SARS-CoV-2 (Si et al., 2020; Zhang
et al., 2021). Finally, Kim et al. used a microfluidic gut chip to
study the contributions of the microbiome to intestinal
pathophysiology and showed that flow plus peristalsis-like
mechanical deformations were necessary to protect against
bacterial overgrowth reminiscent of inflammatory bowel
disease (Kim et al., 2016); other studies have used microfluidic
systems to investigate host-microbe interactions (Kim et al.,
2012; Shah et al., 2016) and microbial diversity (Tovaglieri
et al., 2019; Jalili-Firoozinezhad et al., 2019).

Despite its potential relevance, few in vitro bladder models
have incorporated flow. One study used a Cellix chip to show
that flow of UPEC in cell culture media enabled their adhesion to
vascular endothel ia l ce l l s (mimicking blood-borne
dissemination) but had minimal effect on binding to bladder
epithelial cells compared with static conditions (Feenstra et al.,
2017). However, this study was performed in 2D culture in the
absence of urine, and the primary goal was to investigate blood-
borne dissemination of UPEC rather than invasion into bladder
cells per se. Another study demonstrated filamentous rod
formation and secondary infection of bladder cells by UPEC
under conditions of urine flow using a flow-cell chamber
(Andersen et al., 2012). The degree of filamentation was
dependent on urine concentration, supporting the idea that
flow can affect the infection behavior of UPEC in human cells.
However, infection was tested in bladder cell cultures, not a fully
differentiated urothelium. As mentioned above, a microfluidic
platform with urine flow was used to study UPEC behavior in a
human bladder epithelial cell line (Iosifidis and Duggin, 2020). In
a recent pre-print, Sharma et al., 2021 reported a bladder-on-
chip incorporating fluid flow, mechanical strain and urine
exposure applied to differentiated bladder cell monolayers co-
cultured with microvascular cells (see Section 5.4.3) (Sharma
et al., 2021). Finally, attachment of E. coli to bladder cell line
monolayers was found to be highest at low shear stress, allowing
for maximal initial attachment of bacterial Fim H receptors via a
slip-bond mechanism (Zalewska-Piątek et al., 2020). Thus, how
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the low level of shear experienced by umbrella cells in vivo (Jin
et al., 2010; Ates ̧çi et al., 2014) affects their physiology and
interaction with invading pathogens remains unclear. The above
studies suggest the potential for uncovering further benefits of
flow in UTI bladder models, including (but not limited to)
maintenance of bladder epithelial differentiation and
promotion of bacterial-epithelial interactions in a more
physiological context.

Platforms/Strategies to Study the Effects of Flow
To study the role of fluid flow in UTI, the ideal platform would
provide user control over flow (for example, to mimic urination
patterns, to provide perfusion or nutrient replenishment); have
the potential to include stretch or other biophysical and
biomechanical cues (e.g., ECM); maintain two fluid
compartments to aid polarization of the urothelial organoid;
incorporate capabilities to interrogate the tissue using various
assays; and ideally scale to a throughput allowing experimental
replicates while also accommodating multiple variables such
bacterial strains and therapeutic dosing. Microfluidic-based
approaches such as “microphysiological systems” or “organ-
on-chip” platforms have been deployed extensively for other
tissue models (recent reviews include (Zhang et al., 2018; Low
et al., 2020; Peterson et al., 2020) and could be an equally
promising strategy for UTI models. Bacterial biofilms and
antibiotic therapies have been studied in cell-free systems with
flow, where flow within a microfluidic configuration allowed
analysis of biofilm growth and infection potential (Terry and
Neethirajan, 2014; Wright et al., 2015). As described above,
bacterial infection of human cells has also responded to flow in
an in vitro system capable of stretch (Grassart et al., 2019). Such
systems demonstrate the utility and impact of flow on bacterial
infection in vitro, but have yet to be merged with throughput.
Given the timeframe of urothelial organoid differentiation in
vitro (2-3 weeks), throughput will be essential for advanced
models seeking to study multiple variables or for drug
discovery efforts. Flow has been employed in high throughput,
although not in an infection context, and the flow mechanism in
those studies afforded limited control of flow parameters
(Vormann et al., 2021). Pump-controlled flow has been
deployed in high throughput in a microfluidic system with two
fluid compartments for a liver model (Tan et al., 2020), but the
system lacked a stretch component. A logical next step would be
to incorporate flow into a high throughput system, while
retaining the ability to actuate stretch for a two-fluid
compartment system for advanced UTI models.

Urothelial Stretch
Many tissues in the human body undergo modest dynamic
mechanical deformation, but the bladder expands drastically
during the micturition cycle. Unlike the heart and blood vessels
which are constantly under pressure from the blood, the bladder
experiences the extremes of being completely empty and
completely full, with maximum volume capacity of the human
bladder ranging from 300-500 ml. Pressures experienced within
the bladder range from 0-34 cmH2O (0-25 mmHg) while filling
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and can be as high as 200 cmH2O (100-150 mmHg) when full
(Wolfe et al., 2015). In vivo, pressure and stretch are coupled by
the physiological processes of gradual urine filling, storage and
sudden emptying, but these biomechanical cues can be studied
independently ex vivo or in vitro.

Given the ability of the urothelium to increase its surface area
in response to pressure or stretch, proscribing a mechanical
strain experienced by the tissue is not a simple calculation, and
data are difficult to obtain for humans. The urothelium can
increase in apical surface area by ~50% within hours of
experiencing stretch (Wang et al., 2003). Bladder tissue
capacitance, a measure of umbrella cell surface area, increases
over approximately 5 hr regardless of the filling rate at a pressure
differential of 8 cmH2O (Truschel et al., 2002; Carattino et al.,
2013), which represents the pressure during the extended storage
phase in rabbits (Levin and Wein, 1982). Studies of rat bladders
suggest than under normal filling loads, the bladder wall itself
passively stretches 10-20% (Gloeckner et al., 2002). Calculations
based on responses of rabbit bladder tissue to pressure suggest
that umbrella cells can respond to strains in this same range
(Carattino et al., 2013).

Biological Effects of Stretch
Cells in other mechanically active tissues have well-developed
mechano-sensing properties; the bladder urothelium is no
exception. Several signaling pathways and urothelial receptors
contribute to bladder sensing of stretch, and are described in
detail in (Janssen et al., 2017). Biomechanical stretch is known to
affect a variety of cellular behaviors, such as proliferation,
differentiation, maturation, and tissue-specific functions
(Zimmermann, 2013; Yu et al., 2016). Limited published data
exist regarding the effects of stretch on human urothelial cell
behavior, although a few are highlighted below. As such, most of
our understanding is derived from animal studies, typically
rodent and rabbit, where species differences likely exist.

A primary urothelial function is to maintain the urine-blood
barrier (Kreft et al., 2010), no small biological feat during the
dramatic and dynamic mechanical fluctuations that occur with
bladder filling and voiding. It has been reported that TEER
initially dips and then increases during prolonged stretch
(Truschel et al., 2002). Although TEER may drop with stretch,
tight junctions are nevertheless maintained, as determined by
immunofluorescent staining for claudins and ZO-1 and the
limited permeability of tracer molecules (Carattino et al.,
2013). Another group studied human urothelial cell response
to various strains and noted increased proliferation under 5%
strain (Gao et al., 2018).

During bladder filling and extended storage phases, umbrella
cells undergo remarkable changes in surface area mediated by
endo- and exocytosis (Truschel et al., 2002). Changes in these
rates are triggered by mechanical stretch, but not pressure, and
begin within seconds of inducing stretch at pressures as low as 2
cmH2O (Yu et al., 2009). This behavior was demonstrated ex vivo
using rabbit bladder tissue by measured alterations in tissue
capacitance, indicating changes in surface area, which increased
up to 50% after 5 hr of prolonged stretch. Endocytosis was also
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remarkably upregulated with stretch as assayed by biotin-labeled
membrane internalization and imaging of intracellular FITC-
labeled wheat germ agglutinin. Prolonged, rather than transient
or short-term, stretch is required for observed changes in surface
area. However, increased endocytosis occurs in as little as 5 min
after initiation of stretched conditions (Truschel et al., 2002).

Another study showed that mechanical stretch associated
with filling and voiding increased the endo/exocytosis behavior
of bladder epithelial cells, which use fusiform endocytic vesicle
transport to increase and decrease surface membrane area during
bladder expansion and contraction, respectively. This vesicle
trafficking is of considerable interest because it is hypothesized
to be a mechanism hijacked by certain bacterial strains that form
intracellular colonies (Bishop et al., 2007).

Models Incorporating Urothelial Stretch
Despite the critical physiological relevance, an integrated stretch
platform to support complex differentiation of urothelial
organoids along with fluidics and polarized urine exposure has
only begun to be explored. But at a more basic level, researchers
have used multiple strategies to study stretch in urothelial cells,
ranging from whole bladder distension to urothelial monolayer
culture on commercially available stretch platforms. Most such
studies have focused on the impact of mechanical stretch on ATP
release, though few have evaluated human cells. ATP activity is
linked to exocytosis and endocytosis of the mucosal surface
through binding of umbrella P2 receptors; thus, the impact of
stretch on ATP secretion inevitably affects membrane transport
mechanisms (Wang et al., 2005) which, as pointed out
previously, is potentially important for uropathogen invasion.

Tanaka et al. used an organ bath to demonstrate the impact of
stretch on ATP and prostaglandin E2 release, which was dependent
on volume-based rat bladder distension (Tanaka et al., 2011). To
interrogate the impact of stretch on ATP exocytosis, Mochizuki
et al. developed elastic silicone chambers mounted on glass
coverslips seeded with primary mouse urothelial cells for
simultaneous stretch and in situ Ca2+ imaging. They
demonstrated that the TRPV4 cation channel mediates the release
of ATP and the influx of Ca2+ via a stretch-dependent mechanism
(Mochizuki et al., 2009). This stretch methodology was also
subsequently used to analyze mechanosensation in the bladder
through piezo channels (Miyamoto et al., 2014).

The importance of stretch on barrier function and tight junction
proteins was demonstrated by mounting circular excised sections of
rabbit urothelia in modified Ussing chambers and utilizing
hydrostatic pressure-induced stretch (Truschel et al., 2002;
Carattino et al., 2013). Multiple studies used a similar system to
study the polarization of stretch-induced ATP secretion,
demonstrating ten times more concentrated ATP supernatant on
the mucosal surface versus the basal surface in rabbits (Yu, 2015).
Although these models are fascinating, all results discussed thus far
have been in non-human urothelial cell models and tissues.

A small subset of studies focusing on patient samples has
demonstrated that mechanical stretch also affects primary human
urothelial cells cultured in vitro. Using commercial stretch
platforms, primary human cells isolated from patients with
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 18
interstitial cystitis (IC), a chronic disease of unknown etiology,
were shown to have significantly higher supernatant levels of ATP
under stretch compared with stretched healthy control samples
(Sun et al., 2001). Similarly, stretched IC patient cells demonstrated
higher levels of purinergic receptor subtype P2X3, which plays a role
in transmitting pain signals to the central nervous system (SUN and
CHAI, 2004). This finding supports the hypothesis that urothelial
cells can phenotypically mimic sensory neurons, with this
phenotype driven by the presence of mechanical stretch.
Therefore, primary human urothelial cells in stretch models can
address crucial questions in urothelial biology.

In addition to the urothelium, the impact of mechanical
stretch on other cell types such as smooth muscle cells (SMCs)
isolated from the bladder has been explored. Bu et al.
demonstrated that stretch-induced proliferation of SMCs
correlated with the upregulation of metalloproteinases (MMPs)
MMP-1, 2, 3, and 7 under 10% and 15% stretch conditions in a
stretch-dependent manner (Bu et al., 2014). Other studies have
explored the impact of stretch on SMCs, demonstrating the
importance of this mechanical stimulus for aspects of the
bladder beyond the urothelium (McDermott et al., 2013;
Zheng et al., 2016; Pingyu et al., 2019).

Platforms/Strategies to Study the Effects of Stretch
Multiple commercial platforms provide the capability to study
various in vitro tissues under mechanical stretch conditions,
though certain parameters discussed in this review have yet to
be incorporated into a platform capable of supporting a
complete bladder infection model. Ideally, an in vitro system
capable of uniform, biaxial strain within the range of 10-50%
strain is desirable. To support a pragmatic and robust
workflow, the ability to experiment with multiple replicates
and image experimental samples in situ is vital; however,
frequently used stretch platforms in their current forms are
not likely to support the complexity of a fully differentiated
bladder UTI model.

Existing commercial options achieve multiple-device
throughput by implementing stretch on silicone-based
substrates such as the uniaxial MCFX (CellScale) and STB-
1400 (Strex Inc.) systems, achieving maximum strains of 12.5%
and 20%, respectively. These companies also offer models that
achieve biaxial stretch up to 20% in the XY plane, but most
commercial biaxial models are only offered as single-well
systems, such as the MCB1 (CellScale), or the STB-190-XY
(Strex Inc.), which sacrifices throughput for the additional
strain dimension. The most impressive system to date able to
implement biaxial strain in relatively high throughput, the HT
BioFlex® (FlexCell), can actuate 24 wells at once, though the
increased throughput sacrifices the maximum strain that the
system can achieve, topping out at 8%. The company offers a
lower throughput BioFlex® model that achieves biaxial 20%
strain in 6 devices simultaneously (FlexCell).

The ability to provide multi-faceted stimuli for cell-type
differentiation is favorable; the C-Stretch system (IonOptix
LLC) incorporates electrical stimulation alongside stretch to
assist differentiation of naïve cultured cardiomyocytes. The
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ability to incorporate both fluid flow and stretch in these
platforms would be widely beneficial for bladder and other in
vitro models. Unfortunately, none of these systems incorporate
them simultaneously, and all of the options discussed do not
implement permeable substrates compatible with urine exposure
differentiation strategies.

Figure 2 depicts examples of various platforms used for
in vitro bladder studies. To date, the closest relevant platform
capable of integrating multiple mechanical stimuli is the Chip S-
1® system (Emulate Inc.), which utilizes microfluidic flow paths
and flexible side walls exposed to vacuum to deliver simultaneous
flow up to 0.3 dynes/cm2, and demonstrated uniaxial strain of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 19
10%. In a recent pre-print, this platform modeled infection in
differentiated HTB9 bladder cancer cell monolayers over a 6-
hour voiding cycle, incorporating both flow and mechanical
stretch with a porous membrane allowing for fluid transport
between channels; neutrophils were recruited to sites of
infection, and UPEC IBCs formed and persisted in the
presence of antibiotics, supporting the hypothesis that IBCs
play a role in recurrent infection (Sharma et al., 2021). Despite
these strengths, areas for improvement include urothelial
stratification, throughput capacity, and membrane properties,
specifically pore size, pore density and drug sorption issues in
PDMS (Shirure and George, 2017).
A

B

D

E

F
C

FIGURE 2 | Platforms with fluid flow and/or mechanical stretch used for in vitro bladder studies. (A) The Cellix Vena8 Fluoro+ Biochip was used by Feenstra
et al., 2017 to study E. coli adhesion to human microvascular endothelial cells and bladder epithelial cell lines. Figures modified from Cellix company website,
with permission. (B) Custom flow chambers were used by Andersen et al., 2012 and Zalewska-Piatek et al., 2020 to study the role of flow in E. coli adhesion to
human bladder epithelial cells. Example shown is from Andersen et al., 2012 reproduced with permission from the American Society for Microbiology. (C) The
CellASIC ONIX platform was used by Iosifidis and Duggin, 2020 to study the role of urine composition and pH on UPEC infection of a bladder epithelial cell line.
Top schematic of plate from Lee et al., reproduced with permission from Springer Nature. Bottom panel from Iosifidis and Duggin, 2020 reproduced with
permission from the American Society for Microbiology. (D) Truschel et al., 2002 used modified Ussing chambers to induce stretch of excised rabbit bladder
tissue. Figure reproduced in compliance with the Creative Commons Non-Commercial Share Alike 3.0 Uported license agreement. (E) FlexCell systems were
used by Sun et al., 2001 and 2004 studies to investigate ATP release from primary human bladder urothelial cells from healthy and IC patients. Author
schematic depicting the platform’s function. (F) Recently, Sharma et al., 2021 used Emulate’s organ-on-chip platform that incorporates both fluid flow and
stretch in a bladder chip model of infection. Figure modified from Sharma et al., 2021 pre-print in compliance with the Creative Commons CC-BY-NC-ND 4.0
International License.
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To our knowledge the field still lacks a combined stretch- and
flow-based platform with some degree of throughput to support
a truly differentiated and stratified human urothelial organoid,
fulfilling all the criteria necessary for exploring the complex
mechanisms involved in human bladder UTIs (Figure 3).
FUTURE DIRECTIONS

Many mysteries still remain regarding the host/pathogen
interactions of UPEC, to say nothing of the wide array of other
understudied species that infect the urinary tract. On the
horizon, technological advancements promise an exciting array
of improvements to in vitro human models both generally, and
for studying the infection biology of UTI in particular. The use of
human cells also opens up the possibility of precision medicine
by allowing the interrogation of UTI in the context of
individual patients.

It is important to be aware of the limitations of in vitro systems.
For instance, since most human cell-based models are closed
structures, they still lack tissue-tissue interfaces, vascularization
and circulation of immune cells. Therefore, beyond making the
necessary improvements described in this review to isolated
urothelial systems, we expect that linking up the bladder
environment to its adjacent niches such as gut and kidney using
“body-on-chip” platforms will add further nuance. Similarly, co-
culturing human immune cells and/or underlying human muscle
cells, fibroblasts and stroma could breathe further life into existing
models. Currently, however, the recapitulation of some crucial
physiology is difficult, such as the transport and/or absorption of
drugs, nutrients, oxygen, inflammatory molecules and the immune
cells themselves. However, significant breakthroughs have occurred
recently (reviewed in Ingber, 2020). Once advanced strategies can be
introduced into human-based models, such as the integration of
self-organized capillary networks, a complex surrounding ECM,
sensors for real-time functional measurements, and the long-term
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 20
maintenance of co-cultures with different tissue types and their
microbiota, the study of human pathophysiological events may well
be more accurate and controllable than in animal models.

While animals will continue to reveal crucial insights about
human infection biology, we must acknowledge their own
limitations openly. We support a strategy whereby human cell
model systems are used alongside animals to provide
complementary information. It is no secret that paper referees
and grant reviewers are quick to demand animal studies or to
discount meticulous results gathered using even advanced
human in vitro systems, and we quite agree with those (Ingber,
2020) who argue that the scientific community should consider
whether such dampening activities are in the best spirit of
scientific inquiry.
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FIGURE 3 | Key features required for advanced human urothelial models and their importance for UTI research.
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Staphylococcus Saprophyticus ATCC 15305 is Internalized Into Human
Urinary Bladder Carcinoma Cell Line 5637. FEMS Microbiol. Lett. 285, 163–
169. doi: 10.1111/j.1574-6968.2008.01218.x

Szabados F., Mohner A., Kleine B., and Gatermann S. G. (2013). Staphylococcus
Saprophyticus Surface-Associated Protein (Ssp) is Associated With Lifespan
Reduction in Caenorhabditis Elegans.Virulence 4, 604–611. doi: 10.4161/viru.25875

Tabel Y., Berdeli A., and Mir S. (2007). Association of TLR2 Gene Arg753Gln
Polymorphism With Urinary Tract Infection in Children. Int. J. Immunogen
34, 399–405. doi: 10.1111/j.1744-313X.2007.00709.x

Takeuchi O., and Akira S. (2010). Pattern Recognition Receptors and
Inflammation. Cell 140, 805–820. doi: 10.1016/j.cell.2010.01.022

Takeuchi O., Hoshino K., Kawai T., Sanjo H., Takada H., Ogawa T., et al. (1999).
Differential Roles of TLR2 and TLR4 in Recognition of Gram-Negative and
Gram-Positive Bacterial Cell Wall Components. Immunity 11, 443–451. doi:
10.1016/S1074-7613(00)80119-3

Tanaka I., Nagase K., Tanase K., Aoki Y., Akino H., and Yokoyama O. (2011).
Modulation of Stretch Evoked Adenosine Triphosphate Release From Bladder
Epithelium by Prostaglandin E2. J. Urol. 185, 341–346. doi: 10.1016/
j.juro.2010.09.042

Tan C. K., Carey A. J., Cui X., Webb R. I., Ipe D., Crowley M., et al. (2012).
Genome-Wide Mapping of Cystitis Due to Streptococcus Agalactiae and
Escherichia Coli in Mice Identifies a Unique Bladder Transcriptome That
Signifies Pathogen-Specific Antimicrobial Defense Against Urinary Tract
Infection. Infection Immun. 80, 3145–3160. doi: 10.1128/IAI.00023-12

Tan K., Coppeta J., Azizgolshani H., Isenberg B. C., Keegan P. M., Cain B. P., et al.
(2020). Correction: A High-Throughput Microfluidic Microphysiological
System (PREDICT-96) to Recapitulate Hepatocyte Function in Dynamic,
Re-Circulating Flow Conditions. Lab. Chip 20, 3653–3653. doi: 10.1039/
D0LC90069A

Tang H., Abouleila Y., Si L., Ortega-Prieto A. M., Mummery C. L., Ingber D. E.,
et al. (2020). Human Organs-on-Chips for Virology. Trends Microbiol. 28,
934–946. doi: 10.1016/j.tim.2020.06.005

Tash J. A., David S. G., Vaughan E. D., and Herzlinger D. A. (2001).
Fibroblast GROWTH Factor-7 REGULATES Stratification OF the
BLADDER Urothelium. J. Urol. 166, 2536–2541. doi: 10.1016/S0022-
5347(05)65630-3

Tavana H., Zamankhan P., Christensen P. J., Grotberg J. B., and Takayama S.
(2011). Epithelium Damage and Protection During Reopening of Occluded
Airways in a Physiologic Microfluidic Pulmonary Airway Model. Biomed.
Microdevices 13, 731–742. doi: 10.1007/s10544-011-9543-5

Terry J., and Neethirajan S. (2014). A Novel Microfluidic Wound Model for
Testing Antimicrobial Agents Against Staphylococcus Pseudintermedius
Biofilms’. J. Nanobiotechnol. 12, 1. doi: 10.1186/1477-3155-12-1

Thacker V. V., Dhar N., Sharma K., Barrile R., Karalis K., and McKinney J. D.
(2020). A Lung-on-Chip Model of Early Mycobacterium Tuberculosis
Infection Reveals an Essential Role for Alveolar Epithelial Cells in
Controlling Bacterial Growth. eLife 9, e59961. doi: 10.7554/eLife.59961

Thänert R., Reske K. A., Hink T., Wallace M. A., Wang B., Schwartz D. J., et al.
(2019). Comparative Genomics of Antibiotic-Resistant Uropathogens
Implicates Three Routes for Recurrence of Urinary Tract Infections. mBio
10, e01977–e01919. doi: 10.1128/mBio.01977-19

Threadgill D. W., Dlugosz A. A., Hansen L. A., Tennenbaum T., Lichti U., Yee D.,
et al. (1995). Targeted Disruption of Mouse EGF Receptor: Effect of Genetic
Background on Mutant Phenotype. Science 269, 230. doi: 10.1126/
science.7618084

Thumbikat P., Berry R. E., Zhou G., Billips B. K., Yaggie R. E., Zaichuk T., et al.
(2009). Bacteria-Induced Uroplakin Signaling Mediates Bladder Response to
Infection. PloS Pathog. 5, e1000415. doi: 10.1371/journal.ppat.1000415

Thumbikat P., Waltenbaugh C., Schaeffer A. J., and Klumpp D. J. (2006). Antigen-
Specific Responses Accelerate Bacterial Clearance in the Bladder. J. Immunol.
176, 3080. doi: 10.4049/jimmunol.176.5.3080

Timmermans S., Montagu M. V., and Libert C. (2017). Complete Overview of
Protein-Inactivating Sequence Variations in 36 Sequenced Mouse Inbred
Strains. Proc. Natl. Acad. Sci. 114, 9158. doi: 10.1073/pnas.1706168114
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 28
Toh Y.-C., Lim T. C., Tai D., Xiao G., van Noort D., and Yu H. (2009). A
Microfluidic 3D Hepatocyte Chip for Drug Toxicity Testing. Lab. Chip 9,
2026–2035. doi: 10.1039/b900912d

Torisawa Y.-s., Spina C. S., Mammoto T., Mammoto A., Weaver J. C., Tat T., et al.
(2014). Bone Marrow–on–a–Chip Replicates Hematopoietic Niche Physiology
In Vitro. Nat. Methods 11, 663–669. doi: 10.1038/nmeth.2938

Tötemeyer S., Foster N., Kaiser P., Maskell D. J., and Bryant C. E. (2003). Toll-Like
Receptor Expression in C3H/HeN and C3H/HeJ Mice During Salmonella
Enterica Serovar Typhimurium Infection. Infection Immun. 71, 6653–6657.
doi: 10.1128/IAI.71.11.6653-6657.2003

Tovaglieri A., Sontheimer-Phelps A., Geirnaert A., Prantil-Baun R., Camacho D. M.,
and Chou D. B. (2019). Species-Specific Enhancement of Enterohemorrhagic
E. Coli Pathogenesis Mediated by Microbiome Metabolites. Microbiome 7, 43.
doi: 10.1186/s40168-019-0650-5

Truschel S. T., Wang E., Ruiz W. G., Leung S.-M., Rojas R., Lavelle J., et al. (2002).
Stretch-Regulated Exocytosis/Endocytosis in Bladder Umbrella Cells. Mol.
Biol. Cell 13, 830–846. doi: 10.1091/mbc.01-09-0435

Tsantoulas C., Farmer C., Machado P., Baba K., McMahon S. B., and Raouf R.
(2013). Probing Functional Properties of Nociceptive Axons Using aMicrofluidic
Culture System. PloS One 8, e80722. doi: 10.1371/journal.pone.0080722

Uchio-Yamada K., Monobe Y., Akagi K.-I., Yamamoto Y., Ogura A., and Manabe N.
(2016). Tensin2-deficient Mice on FVB/N Background Develop Severe Glomerular
Disease. J. Veterinary Med. Sci. 78, 811–818. doi: 10.1292/jvms.15-0442

Ulett G. C., Webb R. I., Ulett K. B., Cui X., Benjamin W. H., Crowley M., and
Schembri M. A. (2010). Group B Streptococcus (GBS) Urinary Tract Infection
Involves Binding of GBS to Bladder Uroepithelium and Potent but GBS-
Specific Induction of Interleukin 1a. J. Infec. Dis. 201 (6), 866–870. doi:
10.1086/650696

Vance R. E., Jamieson A. M., Cado D., and Raulet D. H. (2002). Implications of
CD94 Deficiency and Monoallelic NKG2A Expression for Natural Killer Cell
Development and Repertoire Formation. Proc. Natl. Acad. Sci. 99, 868. doi:
10.1073/pnas.022500599

van de Wijdeven R., Ramstad O. H., Bauer U. S., Halaas Øyvind, Sandvig A., and
Sandvig I. (2018). Structuring a Multi-Nodal Neural Network In Vitro Within
a Novel Design Microfluidic Chip. Biomed. Microdevices 20, 9. doi: 10.1007/
s10544-017-0254-4

Varley C., Hill G., Pellegrin S., Shaw N. J., Selby P. J., Trejdosiewicz L. K., et al.
(2005). Autocrine Regulation of Human Urothelial Cell Proliferation and
Migration During Regenerative Responses In Vitro. Exp. Cell Res. 306, 216–
229. doi: 10.1016/j.yexcr.2005.02.004

Vasl J., Oblak A., Gioannini T. L., Weiss J. P., and Jerala R. (2009). Novel Roles
of Lysines 122, 125, and 58 in Functional Differences Between Human and
Murine MD-2. J. Immunol. (Baltimore Md. 1950) 183, 5138–5145. doi: 10.4049/
jimmunol.0901544

Vasyutin I., Zerihun L., Ivan C., and Atala A. (2019). Bladder Organoids and
Spheroids: Potential Tools for Normal and Diseased Tissue Modelling.
Anticancer Res. 39, 1105. doi: 10.21873/anticanres.13219

Vaure C, and Liu Y. (2014). A Comparative Review of Toll-Like Receptor 4
Expression and Functionality in Different Animal Species. Front. Immunol. 5,
316–316. doi: 10.3389/fimmu.2014.00316

Vedula E. M., Alonso J. L., Amin Arnaout M., and Charest J. L. (2017). A
Microfluidic Renal Proximal Tubule With Active Reabsorptive Function. PloS
One 12, e0184330. doi: 10.1371/journal.pone.0184330

Vidal S. M., Pinner E., Lepage P., Gauthier S., and Gros P. (1996). Natural
Resistance to Intracellular Infections: Nramp1 Encodes a Membrane
Phosphoglycoprotein Absent in Macrophages From Susceptible (Nramp1
D169) Mouse Strains. J. Immunol. 157, 3559.

Villenave R., Wales S. Q., Hamkins-Indik T., Papafragkou E., Weaver J. C.,
Ferrante T. C., et al. (2017). Human Gut-On-A-Chip Supports Polarized
Infection of Coxsackie B1 Virus In Vitro. PloS One 12, e0169412. doi:
10.1371/journal.pone.0169412
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