22 research outputs found

    Effects of NaCl on growth and activity of enzymes involved in carbon metabolism in leaves of tobacco (Nicotiana rustica)

    Get PDF
    The adverse effects of salt should not be the same in tobacco plants exposed to a permanent and transient high concentration of NaCl in its environment. Experiments were conducted in order to verify the hypothesis of reversibility of NaCl effects. The study of this reversibility is checked by monitoring a number of parameters in pre-stressed plants and then, replaced in normal conditions. Plants previously grown for 30 days on basic medium were treated for 7 days with 200 mM NaCl and then placed back on the basic culture without NaCl for 10 days. The results show that NaCl suppression leads to a resumption of growth with a decrease in the concentration of sodium (Na+) and chloride ions (Cl-). Hence, potassium content (K+) increases gradually in the leaves to reach the level obtained with unstressed plants. At the same time, there is a stimulation of the activities of phosphoenolpyruvate carboxylase (PEPC), malate dehydrogenase isoenzymes (NAD, NADP, NADH and NADPH-MDH) and isocitrate dehydrogenase (ICDH) after NaCl had been removed. Along with the boosting of the activity of these enzymes involved in the process of carbon assimilation, there is a gradual decrease in soluble sugars content, suggesting a resumption of the normal activity of photosynthetic assimilation process. All these results verify our hypothesis and can be explained by the ability of the plant to dilute the effects of Na+ and Cl- during the recovering period. An important result of this study is that a transient salinity is not necessarily followed by a significant depreciation in product yield or quality.Keywords: Tobacco, NaCl, reversibility, phosphoenolpyruvate carboxylase (PEPC), malate dehydrogenase (MDH), isocitrate dehydrogenase (ICDH

    Response of two wheat genotype to long-term salinity stress in relation to oxidative stress and osmolyte concentration

    No full text
    Effect of long-term salinity stress was studied in wheat, Karim (tolerant) and Om Rabiaa (moderately tolerant) under control and two levels of salinity (100 and 200 mM NaCl). Salinity stress decreased relative water content (RWC), chlorophyll (CHL), carotenoids (CAR), membrane stability index (MSI), and increased hydrogen peroxide (H2O2), thiobarbituric acid reactive substances (TBARS), proline, glycine-betaine (GB), soluble sugars, superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR) activity in both the genotypes and at all the stages. Salinity induced decrease in RWC, CHL, CAR, MSI, were significantly higher in Om Rabiaa than more tolerant Karim. Karim recorded higher activity of SOD, CAT, GR, as well as contents of proline, soluble sugar, GB and K, and comparatively lower H2O2 and TBARS contents compared with Om Rabiaa. Om Rabiaa also showed higher Na and Na/K ratio. Results show that salinity tolerance of Karim as manifested by lower decrease in biomass is associated with higher antioxidant activity, osmolyte concentration and potassium contents, and lower H2O2, TBARS and sodium contents than Om Rabiaa
    corecore