167 research outputs found

    Surface Instabilities on Liquid Oxygen in an Inhomogeneous Magnetic Field

    Full text link
    Liquid oxygen exhibits surface instabilities when subjected to a sufficiently strong magnetic field. A vertically oriented magnetic field gradient both increases the magnetic field value at which the pattern forms and shrinks the length scale of the surface patterning. We show that these effects of the field gradient may be described in terms of an ``effective gravity'', which in our experiments may be varied from 1g to 360g.Comment: 4 pages, 5 embedded figures in eps forma

    Operation without Operators

    Get PDF

    Off-line production of intense 7,10Be+^{7,10}Be^{+} beams

    Get PDF
    7^7Be and 10^{10}Be were produced by 590~MeV proton bombardment of a graphite target at PSI. Parts of this graphite target were transferred into an ISOLDE target and ion source unit and ionized with the ISOLDE resonance ionization laser ion source (RILIS). Thus intense radioactive ion beams of 300~nA of 7,10^{7,10}Be+^+ were produced off-line

    Isotropic plasma-thermal atomic layer etching of superconducting TiN films using sequential exposures of molecular oxygen and SF6/_6/H2_2 plasma

    Full text link
    Microwave loss in superconducting titanium nitride (TiN) films is attributed to two-level systems in various interfaces arising in part from oxidation and microfabrication-induced damage. Atomic layer etching (ALE) is an emerging subtractive fabrication method which is capable of etching with Angstrom-scale etch depth control and potentially less damage. However, while ALE processes for TiN have been reported, they either employ HF vapor, incurring practical complications; or the etch rate lacks the desired control. Further, the superconducting characteristics of the etched films have not been characterized. Here, we report an isotropic plasma-thermal TiN ALE process consisting of sequential exposures to molecular oxygen and an SF6_6/H2_2 plasma. For certain ratios of SF6_6:H2_2 flow rates, we observe selective etching of TiO2_2 over TiN, enabling self-limiting etching within a cycle. Etch rates were measured to vary from 1.1 \r{A}/cycle at 150 ^\circC to 3.2 \r{A}/cycle at 350 ^\circC using ex-situ ellipsometry. We demonstrate that the superconducting critical temperature of the etched film does not decrease beyond that expected from the decrease in film thickness, highlighting the low-damage nature of the process. These findings have relevance for applications of TiN in microwave kinetic inductance detectors and superconducting qubits.Comment: 17 pages, 7 figure

    The evolution of the ISOLDE control system

    Get PDF
    The ISOLDE on-line mass separator facility is operating on a Personal Computer based control system since spring 1992. Front End Computers accessing the hardware are controlled from consoles running Microsoft WindowsTM through a Novell NetWare4TM local area network. The control system is transparently integrated in the CERN wide office network and makes heavy use of the CERN standard office application programs to control and to document the running of the ISOLDE isotope separators. This paper recalls the architecture of the control system, shows its recent developments and gives some examples of its graphical user interface

    Effects of thermal shocks on the release of radioisotopes and on molten metal target vessels

    Get PDF
    The ISOLDE pulsed proton beam peak power amounts to 500 MW during the 2.4 ms proton pulse. The fraction of the proton pulse energy deposited in the target material is at the origin of severe thermal shocks. Quantitative measurement of their effect on the release of radioelements from ISOLDE targets was obtained by comparison of release profiles measured under different proton beam settings. The thermal shock induced in liquids (Pb, Sn, La) lead to mechanical failure of ISOLDE molten metal target vessels. Failure analysis is presented and discussed in the light of the response of mercury samples submitted to the ISOLDE beam and monitored by high-speed optical systems

    Production yields of noble-gas isotopes from ISOLDE UCx_{x}/graphite targets

    Get PDF
    Yields of He, Ne, Ar, Kr and Xe isotopic chains were measured from UCx_{x}/graphite and ThCx_{x}/graphite targets at the PSB-ISOLDE facility at CERN using isobaric selectivity achieved by the combination of a plasma-discharge ion source with a water-cooled transfer line. %The measured half-lives allowed %to calculate the decay losses of neutron-rich isotopes in the %target and ion-source system, and thus to obtain information on the in-target %productions from the measured yields. The delay times measured for a UCx_x/graphite target allow for an extrapolation to the expected yields of very neutron-rich noble gas isotopes, in particular for the ``NuPECC reference elements'' Ar and Kr, at the next-generation radioactive ion-beam facility EURISOL. \end{abstract} \begin{keyword} % keywords here, in the form: keyword \sep keyword radioactive ion beams \sep release \sep ion yields \sep ISOL (Isotope Separation On-Line) \sep uranium and thorium carbide targets. % PACS codes here, in the form: \PACS code \sep code \PACS 25.85.Ge \sep 28.60+S \sep 29.25.Rm

    公众参与消防安全建设:路径选择与制度供给

    Get PDF
    消防安全是公共安全的重要组成部分,公众参与消防安全建设是消防安全管理工作的内在需求和必然趋势。积极探索公众参与消防安全建设的具体路径,为公民参与消防建设提供制度保障是当前消防管理工作的重要课题。本文力图从消防政策的制定与监督、社会化的消防工作网络、依托社会的消防教育三个方面构建以政府为主导的公民参与消防安全建设的路径,并为这些参与途径设计了以信息公开及法制建设为基础,以增强民间组织参与能力为目标,以经济、文化等各种手段为支持的公众参与消防建设的制度框架

    Oxide Fiber Targets at ISOLDE

    Get PDF
    Many elements are rapidly released from oxide matrices. Some oxide powder targets show a fast sintering, thus losing their favorable release characteristics. Loosely packed oxyde fiber targets are less critical since they may maintain their open structure even when starting to fuse together at some contact points. The experience with various oxyde fiber targets (titania, zirconia, ceria and thoria) used in the last years at ISOLDE is reviewed. For short-lived isotopes of Cu, Ga and Xe the zirconia and ceria targets respectively provided significantly higher yields than any other target (metal foils, oxide powders, etc.) tested before. Titania fibers, which were not commercially available, were produced in a relic process by impregnation of a rayon felt in a titanium chloride solution and subsequent calcination by heating the dried felt in air. Thoria fibers were obtained either by the same process or by burning commercial gas lantern mantle cloth. In the future a beryllia fiber target could be used to produce very intense ^6He beams (order of 10^13 ions per s) via the ^9Be(n, alpha) reaction using spallation neutrons
    corecore