16 research outputs found

    Memory Deficits and Transcription Factor Activity Following Traumatic Brain Injury

    Get PDF
    Traumatic brain injury (TBI) is a serious condition and a leading cause of death and disability [1]. No two head injuries are alike and multiple complications are common in TBI. The most serious aspect of TBI is that of cognitive impairment as evidenced by animal and clinical studies focusing on synaptic plasticity and memory [2-5]. However, post trauma effects also includ

    Oscillations and NMDA Receptors: Their Interplay Create Memories

    No full text
    Oscillatory activity is inherent in many types of normal cellular function. Importantly, oscillations contribute to cellular network activity and cellular decision making, which are driving forces for cognition. Theta oscillations have been correlated with learning and memory encoding and gamma oscillations have been associated with attention and working memory. NMDA receptors are also implicated in oscillatory activity and contribute to normal function and in disease-related pathology. The interplay between oscillatory activity and NMDA receptors are intellectually curious and a fascinating dimension of inquiry. In this review we introduce some of the essential mathematical characteristics of oscillatory activity in order to provide a platform for additional discussion on recent studies concerning oscillations involving neuronal firing and NMDA receptor activity, and the effect of these dynamic mechanisms on cognitive processing in health and disease

    Early Onset of Sex-Dependent Mitochondrial Deficits in the Cortex of 3xTg Alzheimer’s Mice

    No full text
    Alzheimer’s disease (AD) is a major public health concern worldwide. Advanced age and female sex are two of the most prominent risk factors for AD. AD is characterized by progressive neuronal loss, especially in the cortex and hippocampus, and mitochondrial dysfunction has been proposed to be an early event in the onset and progression of the disease. Our results showed early perturbations in mitochondrial function in 3xTg mouse brain, with the cortex being more susceptible to mitochondrial changes than the hippocampus. In the cortex of 3xTg females, decreased coupled and uncoupled respiration were evident early (at 2 months of age), while in males it appeared later at 6 months of age. We observed increased coupled respiration in the hippocampus of 2-month-old 3xTg females, but no changes were detected later in life. Changes in mitochondrial dynamics were indicated by decreased mitofusin (Mfn2) and increased dynamin related protein 1 (Drp1) (only in females) in the hippocampus and cortex of 3xTg mice. Our findings highlight the importance of controlling and accounting for sex, brain region, and age in studies examining brain bioenergetics using this common AD model in order to more accurately evaluate potential therapies and improve the sex-specific translatability of preclinical findings
    corecore