12 research outputs found

    Non-birational twisted derived equivalences in abelian GLSMs

    Full text link
    In this paper we discuss some examples of abelian gauged linear sigma models realizing twisted derived equivalences between non-birational spaces, and realizing geometries in novel fashions. Examples of gauged linear sigma models with non-birational Kahler phases are a relatively new phenomenon. Most of our examples involve gauged linear sigma models for complete intersections of quadric hypersurfaces, though we also discuss some more general cases and their interpretation. We also propose a more general understanding of the relationship between Kahler phases of gauged linear sigma models, namely that they are related by (and realize) Kuznetsov's `homological projective duality.' Along the way, we shall see how `noncommutative spaces' (in Kontsevich's sense) are realized physically in gauged linear sigma models, providing examples of new types of conformal field theories. Throughout, the physical realization of stacks plays a key role in interpreting physical structures appearing in GLSMs, and we find that stacks are implicitly much more common in GLSMs than previously realized.Comment: 54 pages, LaTeX; v2: typo fixe

    From Atiyah Classes to Homotopy Leibniz Algebras

    Full text link
    A celebrated theorem of Kapranov states that the Atiyah class of the tangent bundle of a complex manifold XX makes TX[1]T_X[-1] into a Lie algebra object in D+(X)D^+(X), the bounded below derived category of coherent sheaves on XX. Furthermore Kapranov proved that, for a K\"ahler manifold XX, the Dolbeault resolution Ω1(TX1,0)\Omega^{\bullet-1}(T_X^{1,0}) of TX[1]T_X[-1] is an LL_\infty algebra. In this paper, we prove that Kapranov's theorem holds in much wider generality for vector bundles over Lie pairs. Given a Lie pair (L,A)(L,A), i.e. a Lie algebroid LL together with a Lie subalgebroid AA, we define the Atiyah class αE\alpha_E of an AA-module EE (relative to LL) as the obstruction to the existence of an AA-compatible LL-connection on EE. We prove that the Atiyah classes αL/A\alpha_{L/A} and αE\alpha_E respectively make L/A[1]L/A[-1] and E[1]E[-1] into a Lie algebra and a Lie algebra module in the bounded below derived category D+(A)D^+(\mathcal{A}), where A\mathcal{A} is the abelian category of left U(A)\mathcal{U}(A)-modules and U(A)\mathcal{U}(A) is the universal enveloping algebra of AA. Moreover, we produce a homotopy Leibniz algebra and a homotopy Leibniz module stemming from the Atiyah classes of L/AL/A and EE, and inducing the aforesaid Lie structures in D+(A)D^+(\mathcal{A}).Comment: 36 page

    Lectures on non-commutative K3 surfaces, Bridgeland stability, and moduli spaces

    No full text
    We survey the basic theory of non-commutative K3 surfaces, with a particular emphasis to the ones arising from cubic fourfolds. We focus on the problem of constructing Bridgeland stability conditions on these categories and we then investigate the geometry of the corresponding moduli spaces of stable objects. We discuss a number of consequences related to cubic fourfolds including new proofs of the Torelli theorem and of the integral Hodge conjecture, the extension of a result of Addington and Thomas and various applications to hyperk\ue4hler manifolds. These notes originated from the lecture series by the first author at the school on Birational Geometry of Hypersurfaces, Palazzo Feltrinelli - Gargnano del Garda (Italy), March 19\u201323, 2018
    corecore