122 research outputs found

    A Novel Heterozygous Desmoplakin Variant Causes Cardiocutaneous Syndrome with Arrhythmogenic Cardiomyopathy and Palmoplantar Keratosis

    Full text link
    Cardiocutaneous syndrome (CCS) is often caused by genetic variants in desmoplakin (DSP) in the presence of thick calluses on the hands and soles of the feet (palmoplantar keratoderma) in combination with arrhythmogenic cardiomyopathy. In this case report, we describe a 58-year-old man presenting with a history of cardiomyopathy with recurrent sustained ventricular tachycardia and palmoplantar keratosis. The cardiological evaluation showed biventricular cardiomyopathy, and repeated genetic testing identified a novel DSP variant. Repeated genetic testingis clinically meaningful in patients with a high probability of a specific inherited cardiac disease, such as CCS, particularly if molecular screening has been performed in the pre-NGS era with an incomplete NGS panel or outdated technology as presented in this case report

    Electroanatomical voltage mapping with contact force sensing for diagnosis of arrhythmogenic right ventricular cardiomyopathy

    Get PDF
    Background Three-dimensional electroanatomical mapping (EAM) can be helpful to diagnose arrhythmogenic right ventricular cardiomyopathy (ARVC). Yet, previous studies utilizing EAM have not systematically used contact-force sensing catheters (CFSC) to characterize the substrate in ARVC, which is the current gold standard to assure adequate tissue contact. Objective To investigate reference values for endocardial right ventricular (RV) EAM as well as substrate characterization in patients with ARVC by using CFSC. Methods Endocardial RV EAM during sinus rhythm was performed with CFSC in 12 patients with definite ARVC and 5 matched controls without structural heart disease. A subanalysis for the RV outflow tract (RVOT), septum, free-wall, subtricuspid region, and apex was performed. Endocardial bipolar and unipolar voltage amplitudes (BVA, UVA), signal characteristics and duration as well as the impact of catheter orientation on endocardial signals were also investigated. Results ARVC patients showed lower BVA vs. controls (p = 0.018), particularly in the subtricuspid region (1.4, IQR:0.5–3.1 vs. 3.8, IQR:2.5-5 mV, p = 0.037) and RV apex (2.5, IQR:1.5–4 vs. 4.3,IQR:2.9–6.1 mV, p = 0.019). BVA in all RV regions yielded a high sensitivity and specificity for ARVC diagnosis (AUC 59–78%, p < 0.05 for all), with the highest performance for the subtricuspid region (AUC 78%, 95% CI:0.75–0.81, p < 0.001, negative predictive value 100%). A positive correlation between BVA and an orthogonal catheter orientation (46°-90°:r = 0.106, p < 0.001), and a negative correlation between BVA and EGM duration (r = −0.370, p < 0.001) was found. Conclusions EAM using CFSC validates previous bipolar cut-off values for normal endocardial RV voltage amplitudes. RV voltages are generally lower in ARVC as compared to controls, with the subtricuspid area being commonly affected and having the highest discriminatory power to differentiate between ARVC and healthy controls. Therefore, EAM using CFSC constitutes a promising tool for diagnosis of ARVC

    Changes in Exercise Capacity and Ventricular Function in Arrhythmogenic Right Ventricular Cardiomyopathy: The Impact of Sports Restriction during Follow-Up

    Full text link
    (1) Background: Physical exercise has been suggested to promote disease progression in patients with arrhythmogenic right ventricular cardiomyopathy (ARVC). We aimed to investigate the exercise performance and ventricular function of ARVC patients during follow-up, while taking into account their adherence to exercise restriction recommendations. (2) Methods: This retrospective study included 49 patients (33 male, 67%) who had an exercise test at baseline and after 4.2 ± 1.6 years. Of the 49 ARVC patients, 27 (55%) were athletes, while 22 (45%) were non-athletes. Of the athletes, 12 (44%) continued intensive sports activity (non-adherent), while 15 (56%) stopped intensive physical activity upon recommendation (adherent). The maximum workload in Watts (W), percentage of the target workload (W%), and double product (DP) factor were measured for all patients. (3) Results: The non-adherent cohort had a significant decrease in physical performance (W at baseline vs. follow-up, p = 0.012; W% at baseline vs. follow-up, p = 0.025; DP-factor at baseline vs. follow-up, p = 0.012) over time. Left ventricular (LV) function (LV ejection fraction at baseline vs. follow-up, p = 0.082) showed a decreasing trend in the non-adherent cohort, while the performance of the adherent cohort remained at a similar level. (4) Conclusions: If intensive sports activities are not discontinued, exercise capacity and left ventricular function of athletes with ARVC deteriorates during follow-up. All patients with ARVC need to strictly adhere to the recommendation to cease intense sports activity in order to halt disease progression

    Unmappable ventricular tachycardia after an old myocardial infarction. Long-term results of substrate modification in patients with an implantable cardioverter defibrillator

    Get PDF
    Purpose The frequent occurrence of ventricular tachycardia can create a serious problem in patients with an implantable cardioverter defibrillator. We assessed the long-term efficacy of catheter-based substrate modification using the voltage mapping technique of infarct-related ventricular tachycardia and recurrent device therapy. Methods The study population consisted of 27 consecutive patients (age 68 +/- 8 years, 25 men, mean left ventricular ejection fraction 31 +/- 9%) with an old myocardial infarction and multiple and/or hemodynamically not tolerated ventricular tachycardia necessitating repeated device therapy. A total of 31 substrate modification procedures were performed using the three-dimensional electroanatomical mapping system. Patients were followed up for a median of 23.5 (interquartile range 6.5-53.2) months before and 37.8 (interquartile range 11.7-71.8) months after ablation. Antiarrhythmic drugs were not changed after the procedure, and were stopped 6 to 9 months after the procedure in patients who did not show ventricular tachycardia recurrence. Results Median ventricular tachycardias were 1.6 (interquartile range 0.7-6.7) per month before and 0.2 (interquartile range 0.00-1.3) per month after ablation (P = 0.006). Nine ventricular fibrillation episodes were registered in seven patients before and two after ablation (P = 0.025). Median antitachycardia pacing decreased from 1.6 (interquartile range 0.01-5.5) per month before to 0.18 (interquartile range 0.00-1.6) per month after ablation (P = 0.069). Median number of shocks decreased from 0.19 (interquartile range 0.04-0.81) per month before to 0.00 (interquartile range 0.00-0.09) per month after ablation (P = 0.001). One patient had a transient ischemic attack during the procedure, and another developed pericarditis. Nine patients died during follow-up, eight patients due to heart failure and one patient during valve surgery. Conclusion Catheter-based substrate modification using voltage mapping results in a long-lasting reduction of cardioverter defibrillator therapy in patients with multiple and/or hemodynamically not tolerated infarct-related ventricular tachyarrhythmia

    Electrical modalities beyond pacing for the treatment of heart failure

    Get PDF
    In this review, we report on electrical modalities, which do not fit the definition of pacemaker, but increase cardiac performance either by direct application to the heart (e.g., post-extrasystolic potentiation or non-excitatory stimulation) or indirectly through activation of the nervous system (e.g., vagal or sympathetic activation). The physiological background of the possible mechanisms of these electrical modalities and their potential application to treat heart failure are discussed

    Electrotonic Signals along Intracellular Membranes May Interconnect Dendritic Spines and Nucleus

    Get PDF
    Synapses on dendritic spines of pyramidal neurons show a remarkable ability to induce phosphorylation of transcription factors at the nuclear level with a short latency, incompatible with a diffusion process from the dendritic spines to the nucleus. To account for these findings, we formulated a novel extension of the classical cable theory by considering the fact that the endoplasmic reticulum (ER) is an effective charge separator, forming an intrinsic compartment that extends from the spine to the nuclear membrane. We use realistic parameters to show that an electrotonic signal may be transmitted along the ER from the dendritic spines to the nucleus. We found that this type of signal transduction can additionally account for the remarkable ability of the cell nucleus to differentiate between depolarizing synaptic signals that originate from the dendritic spines and back-propagating action potentials. This study considers a novel computational role for dendritic spines, and sheds new light on how spines and ER may jointly create an additional level of processing within the single neuron
    corecore