12 research outputs found

    Hopf Categories

    Full text link
    We introduce Hopf categories enriched over braided monoidal categories. The notion is linked to several recently developed notions in Hopf algebra theory, such as Hopf group (co)algebras, weak Hopf algebras and duoidal categories. We generalize the fundamental theorem for Hopf modules and some of its applications to Hopf categories.Comment: 47 pages; final version to appear in Algebras and Representation Theor

    On the extension of stringlike localised sectors in 2+1 dimensions

    Get PDF
    In the framework of algebraic quantum field theory, we study the category \Delta_BF^A of stringlike localised representations of a net of observables O \mapsto A(O) in three dimensions. It is shown that compactly localised (DHR) representations give rise to a non-trivial centre of \Delta_BF^A with respect to the braiding. This implies that \Delta_BF^A cannot be modular when non-trival DHR sectors exist. Modular tensor categories, however, are important for topological quantum computing. For this reason, we discuss a method to remove this obstruction to modularity. Indeed, the obstruction can be removed by passing from the observable net A(O) to the Doplicher-Roberts field net F(O). It is then shown that sectors of A can be extended to sectors of the field net that commute with the action of the corresponding symmetry group. Moreover, all such sectors are extensions of sectors of A. Finally, the category \Delta_BF^F of sectors of F is studied by investigating the relation with the categorical crossed product of \Delta_BF^A by the subcategory of DHR representations. Under appropriate conditions, this completely determines the category \Delta_BF^F.Comment: 36 pages, 1 eps figure; v2: appendix added, minor corrections and clarification

    A Monoidal Category for Perturbed Defects in Conformal Field Theory

    Full text link
    Starting from an abelian rigid braided monoidal category C we define an abelian rigid monoidal category C_F which captures some aspects of perturbed conformal defects in two-dimensional conformal field theory. Namely, for V a rational vertex operator algebra we consider the charge-conjugation CFT constructed from V (the Cardy case). Then C = Rep(V) and an object in C_F corresponds to a conformal defect condition together with a direction of perturbation. We assign to each object in C_F an operator on the space of states of the CFT, the perturbed defect operator, and show that the assignment factors through the Grothendieck ring of C_F. This allows one to find functional relations between perturbed defect operators. Such relations are interesting because they contain information about the integrable structure of the CFT.Comment: 38 pages; v2: corrected typos and expanded section 3.2, version to appear in CM

    Déformation, quantification, théorie de Lie

    Full text link
    In 1997, M. Kontsevich proved that every Poisson manifold admits a formal quantization, canonical up to equivalence. In doing so he solved a longstanding problem in mathematical physics. Through his proof and his interpretation of a later proof given by Tamarkin, he also opened up new research avenues in Lie theory, quantum group theory, deformation theory and the study of operads... and uncovered fascinating links of these topics with number theory, knot theory and the theory of motives. Without doubt, his work on deformation quantization will continue to influence these fields for many years to come. In the three parts of this volume, we will 1) present the main results of Kontsevich's 1997 preprint and sketch his interpretation of Tamarkin's approach, 2) show the relevance of Kontsevich's theorem for Lie theory and 3) explain the idea from topological string theory which inspired Kontsevich's proof. An appendix is devoted to the geometry of configuration spaces
    corecore