10 research outputs found

    Protective Intestinal Effects of Pituitary Adenylate Cyclase Activating Polypeptide

    Get PDF
    Pituitary adenylate cyclase activating polypeptide (PACAP) is an endogenous neuropeptide widely distributed throughout the body, including the gastrointestinal tract. Several effects have been described in human and animal intestines. Among others, PACAP infl uences secretion of intestinal glands, blood fl ow, and smooth muscle contraction. PACAP is a well-known cytoprotective peptide with strong anti-apoptotic, anti-infl ammatory, and antioxidant effects. The present review gives an overview of the intestinal protective actions of this neuropeptide. Exogenous PACAP treatment was protective in a rat model of small bowel autotransplantation. Radioimmunoassay (RIA) analysis of the intestinal tissue showed that endogenous PACAP levels gradually decreased with longer-lasting ischemic periods, prevented by PACAP addition. PACAP counteracted deleterious effects of ischemia on oxidative stress markers and cytokines. Another series of experiments investigated the role of endogenous PACAP in intestines in PACAP knockout (KO) mice. Warm ischemia–reperfusion injury and cold preservation models showed that the lack of PACAP caused a higher vulnerability against ischemic periods. Changes were more severe in PACAP KO mice at all examined time points. This fi nding was supported by increased levels of oxidative stress markers and decreased expression of antioxidant molecules. PACAP was proven to be protective not only in ischemic but also in infl ammatory bowel diseases. A recent study showed that PACAP treatment prolonged survival of Toxoplasma gondii infected mice suffering from acute ileitis and was able to reduce the ileal expression of proinfl ammatory cytokines. We completed the present review with recent clinical results obtained in patients suffering from infl ammatory bowel diseases. It was found that PACAP levels were altered depending on the activity, type of the disease, and antibiotic therapy, suggesting its probable role in infl ammatory events of the intestine

    Applying code specialization to FFT libraries for integral parameters

    No full text
    Code specialization is an approach that can be used to improve the sequence of optimizations to be performed by the compiler. The performance of code after specialization may vary, depending upon the structure of the application. For FFT libraries, the specialization of code with different parameters may cause an increase in code size, thereby impacting overall behavior of applications executing in environment with small instruction caches. In this article, we propose a new approach for specializing FFT code that can be effectively used to improve performance while limiting the code increase by incorporating dynamic specialization. Our approach makes use of a static compile time analysis and adapts a single version of code to multiple values through runtime specialization. This technique has been applied to different FFT libraries over Itanium IA-64 platform using icc compiler v 9.0. For highly efficient libraries, we are able to achieve speedup of more than 80 % with small increase in code size

    Targeting the PAC1 Receptor for Neurological and Metabolic Disorders

    No full text
    corecore