1,826 research outputs found

    SOPHIE velocimetry of Kepler transit candidates VI. An additional companion in the KOI-13 system

    Full text link
    We report the discovery of a new stellar companion in the KOI-13 system. KOI-13 is composed by two fast-rotating A-type stars of similar magnitude. One of these two stars hosts a transiting planet discovered by Kepler. We obtained new radial velocity measurements using the SOPHIE spectrograph at the Observatoire de Haute-Provence that revealed an additional companion in this system. This companion has a mass between 0.4 and 1 Msun and orbits one of the two main stars with a period of 65.831 \pm 0.029 days and an eccentricity of 0.52 \pm 0.02. The radial velocities of the two stars were derived using a model of two fast-rotating line profiles. From the residuals, we found a hint of the stellar variations seen in the Kepler light curve with an amplitude of about 1.41 km/s and a period close to the rotational period. This signal appears to be about three order of magnitude larger than expected for stellar activity. From the analysis of the residuals, we also put a 3-sigma upper-limit on the mass of the transiting planet KOI-13.01 of 14.8 Mjup and 9.4 Mjup, depending on which star hosts the transit. We found that this new companion has no significant impact on the photometric determination of the mass of KOI-13.01 but is expected to affect precise infrared photometry. Finally, using dynamical simulations, we infer that the new companion is orbiting around KOI-13B while the transiting planet candidate is expected to orbit KOI-13A. Thus, the transiting planet candidate KOI-13.01 is orbiting the main component of a hierarchical triple system.Comment: Accepted in A&A Letters. 4 pages including 4 figures and the RV tabl

    Índice padronizado de precipitação aplicado às condições de seca no Estado do Espírito Santo.

    Get PDF
    O Índice Padronizado de Precipitação (SPI) é um dos métodos mais utilizados para quantificação da seca. A fim de verificar a possibilidade de utilização do SPI no monitoramento das deficiências e excessos de precipitação na escala mensal, no Estado do Espírito Santo objetivou-se, neste trabalho, verificar o ajuste das séries temporais dessa variável meteorológica à distribuição gama em cinco localidades do Estado. Por meio dos testes de aderência Kolmogorov-Smirnov e qui-quadrado, as séries mensais de precipitação pluvial das localidades sob análise podem ser consideradas oriundas de uma população com distribuição gama incompleta, permitindo o uso do SPI no monitoramento das condições de seca meteorológica. Através de análises de autocorrelação e correlação-cruzada, observou-se que a principal característica das séries do SPI é sua grande variabilidade espaço-temporal, a qual indica que em uma mesma região meses extremamente secos podem ser precedidos e/ou seguidos de meses úmidos ou normais, e que distintos casos de seca podem ocorrer de forma aleatória, entre as localidades e em um mesmo período

    SOPHIE velocimetry of Kepler transit candidates IX. KOI-415 b: a long-period, eccentric transiting brown dwarf to an evolved Sun

    Full text link
    We report the discovery of a long-period brown-dwarf transiting companion of the solar-type star KOI-415. The transits were detected by the Kepler space telescope. We conducted Doppler measurements using the SOPHIE spectrograph at the Observatoire de Haute-Provence. The photometric and spectroscopic signals allow us to characterize a 62.14+-2.69 Mjup, brown-dwarf companion of an evolved 0.94+-0.06 Msun star in a highly eccentric orbit of P = 166.78805+-0.00022 days and e = 0.698+-0.002. The radius of KOI-415 b is 0.79 (-0.07,+0.12) Rjup, a value that is compatible with theoretical predictions for a 10 Gyr, low-metallicity and non-irradiated object.Comment: accepted in A&A Letter

    Characterization of the four new transiting planets KOI-188b, KOI-195b, KOI-192b, and KOI-830b

    Full text link
    The characterization of four new transiting extrasolar planets is presented here. KOI-188b and KOI-195b are bloated hot Saturns, with orbital periods of 3.8 and 3.2 days, and masses of 0.25 and 0.34 M_Jup. They are located in the low-mass range of known transiting, giant planets. KOI-192b has a similar mass (0.29 M_Jup) but a longer orbital period of 10.3 days. This places it in a domain where only a few planets are known. KOI-830b, finally, with a mass of 1.27 M_Jup and a period of 3.5 days, is a typical hot Jupiter. The four planets have radii of 0.98, 1.09, 1.2, and 1.08 R_Jup, respectively. We detected no significant eccentricity in any of the systems, while the accuracy of our data does not rule out possible moderate eccentricities. The four objects were first identified by the Kepler Team as promising candidates from the photometry of the Kepler satellite. We establish here their planetary nature thanks to the radial velocity follow-up we secured with the HARPS-N spectrograph at the Telescopio Nazionale Galileo. The combined analyses of the datasets allow us to fully characterize the four planetary systems. These new objects increase the number of well-characterized exoplanets for statistics, and provide new targets for individual follow-up studies. The pre-screening we performed with the SOPHIE spectrograph at the Observatoire de Haute-Provence as part of that study also allowed us to conclude that a fifth candidate, KOI-219.01, is not a planet but is instead a false positive.Comment: 13 pages, 4 figures, 6 tables, final version accepted for publication in A&

    Improved parameters of seven Kepler giant companions characterized with SOPHIE and HARPS-N

    Get PDF
    Radial-velocity observations of Kepler candidates obtained with the SOPHIE and HARPS-N spectrographs have permitted unveiling the nature of the five giant planets Kepler-41b, Kepler-43b, Kepler-44b, Kepler-74b, and Kepler-75b, the massive companion Kepler-39b, and the brown dwarf KOI-205b. These companions were previously characterized with long-cadence (LC) Kepler data. Here we aim at refining the parameters of these transiting systems by i) modelling the published radial velocities (RV) and Kepler short-cadence (SC) data that provide a much better sampling of the transits, ii) performing new spectral analyses of the SOPHIE and ESPaDOnS spectra, and iii) improving stellar rotation periods hence stellar age estimates through gyrochronology, when possible. Posterior distributions of the system parameters were derived with a differential evolution Markov chain Monte Carlo approach. Our main results are as follows: a) Kepler-41b is significantly larger and less dense than previously found because a lower orbital inclination is favoured by SC data. This also affects the determination of the geometric albedo that is lower than previously derived: Ag < 0.135; b) Kepler-44b is moderately smaller and denser than reported in the discovery paper; c) good agreement was achieved with published Kepler-43, Kepler-75, and KOI-205 system parameters, although the host stars Kepler-75 and KOI-205 were found to be slightly richer in metals and hotter, respectively; d) the previously reported non-zero eccentricities of Kepler-39b and Kepler-74b might be spurious. If their orbits were circular, the two companions would be smaller and denser than in the eccentric case. The radius of Kepler-39b is still larger than predicted by theoretical isochrones. Its parent star is hotter and richer in metals than previously determined. [ABRIDGED]Comment: 17 pages, 9 figures, accepted for publication in Astronomy and Astrophysic
    corecore