1,322 research outputs found

    The use of measured genotype information in the analysis of quantitative phenotypes in man.

    Full text link
    We have begun a measured genotype approach to the genetic analysis of lipid and lipoprotein variability. This approach enables one to simultaneously estimate the frequencies and effects of alleles at specific loci along with the residual polygenetic variance component. In this study we consider the contribution of three common alleles at the locus coding for apolipoprotein E to interindividual variation of total cholesterol, betalipoprotein, and triglyceride levels. A sample of 102 nuclear families consisting of 434 individuals was studied. The frequencies of the ε2, ε3, and ε4 alleles in this sample are 0·137,0·740, and 0·123, respectively. In separate analyses of cholesterol and betalipoprotein levels, a complete model that includes the effects of the six apo E genotypes, unmeasured polygenes, and individual specific environmental effects fits these data significantly better than a reduced model that does not include the effects of the apo E polymorphism or a reduced model that does not include the effects of polygenes. On the average the ε2 allele lowers total cholesterol and betalipoprotein levels by 0·425 mmol/l and 0·811 units, respectively. The ε4 allele is associated with an average increase of these phenotypes by 0·255 mmol/l and 0·628 units, respectively. Simultaneous estimates of the interindividual variability of total cholesterol levels attributable to the apo E polymorphism and to residual polygenic effects are 8% and 56%, respectively. For betalipoprotein levels, we simultaneously estimate these values to be 7% and 42%, respectively. A reduced model including the effects of polygenes but not the effects of the apo E polymorphism fitted the triglyceride data as well as the complete model. The estimate of the fraction of interindividual variability associated with polygenetic effects was 26.5%. We review our present understanding of the genetic architecture underlying variability of cholesterol levels in the population at large and infer that the majority of the genetic variability may be accounted for by polymorphic gene loci with moderate effects on cholesterol levels.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65212/1/j.1469-1809.1987.tb00874.x.pd

    The Value of Rare Genetic Variation in the Prediction of Common Obesity in European Ancestry Populations

    Get PDF
    Polygenic risk scores (PRSs) aggregate the effects of genetic variants across the genome and are used to predict risk of complex diseases, such as obesity. Current PRSs only include common variants (minor allele frequency (MAF) ≥1%), whereas the contribution of rare variants in PRSs to predict disease remains unknown. Here, we examine whether augmenting the standard common variant PRS (PRScommon) with a rare variant PRS (PRSrare) improves prediction of obesity. We used genome-wide genotyped and imputed data on 451,145 European-ancestry participants of the UK Biobank, as well as whole exome sequencing (WES) data on 184,385 participants. We performed single variant analyses (for both common and rare variants) and gene-based analyses (for rare variants) for association with BMI (kg/m2), obesity (BMI ≥ 30 kg/m2), and extreme obesity (BMI ≥ 40 kg/m2). We built PRSscommon and PRSsrare using a range of methods (Clumping+Thresholding [C+T], PRS-CS, lassosum, gene-burden test). We selected the best-performing PRSs and assessed their performance in 36,757 European-ancestry unrelated participants with whole genome sequencing (WGS) data from the Trans-Omics for Precision Medicine (TOPMed) program. The best-performing PRScommon explained 10.1% of variation in BMI, and 18.3% and 22.5% of the susceptibility to obesity and extreme obesity, respectively, whereas the best-performing PRSrare explained 1.49%, and 2.97% and 3.68%, respectively. The PRSrare was associated with an increased risk of obesity and extreme obesity (ORobesity = 1.37 per SDPRS, P obesity = 1.7x10-85; ORextremeobesity = 1.55 per SDPRS, P extremeobesity = 3.8x10-40), which was attenuated, after adjusting for PRScommon (ORobesity = 1.08 per SDPRS, P obesity = 9.8x10-6; ORextremeobesity= 1.09 per SDPRS, P extremeobesity = 0.02). When PRSrare and PRScommon are combined, the increase in explained variance attributed to PRSrare was small (incremental Nagelkerke R2 = 0.24% for obesity and 0.51% for extreme obesity). Consistently, combining PRSrare to PRScommon provided little improvement to the prediction of obesity (PRSrare AUC = 0.591; PRScommon AUC = 0.708; PRScombined AUC = 0.710). In summary, while rare variants show convincing association with BMI, obesity and extreme obesity, the PRSrare provides limited improvement over PRScommon in the prediction of obesity risk, based on these large populations

    Associations of NINJ2 sequence variants with incident ischemic stroke in the Cohorts for Heart and Aging in Genomic Epidemiology (CHARGE) consortium

    Get PDF
    Background<p></p> Stroke, the leading neurologic cause of death and disability, has a substantial genetic component. We previously conducted a genome-wide association study (GWAS) in four prospective studies from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium and demonstrated that sequence variants near the NINJ2 gene are associated with incident ischemic stroke. Here, we sought to fine-map functional variants in the region and evaluate the contribution of rare variants to ischemic stroke risk.<p></p> Methods and Results<p></p> We sequenced 196 kb around NINJ2 on chromosome 12p13 among 3,986 European ancestry participants, including 475 ischemic stroke cases, from the Atherosclerosis Risk in Communities Study, Cardiovascular Health Study, and Framingham Heart Study. Meta-analyses of single-variant tests for 425 common variants (minor allele frequency [MAF] ≥ 1%) confirmed the original GWAS results and identified an independent intronic variant, rs34166160 (MAF = 0.012), most significantly associated with incident ischemic stroke (HR = 1.80, p = 0.0003). Aggregating 278 putatively-functional variants with MAF≤ 1% using count statistics, we observed a nominally statistically significant association, with the burden of rare NINJ2 variants contributing to decreased ischemic stroke incidence (HR = 0.81; p = 0.026).<p></p> Conclusion<p></p> Common and rare variants in the NINJ2 region were nominally associated with incident ischemic stroke among a subset of CHARGE participants. Allelic heterogeneity at this locus, caused by multiple rare, low frequency, and common variants with disparate effects on risk, may explain the difficulties in replicating the original GWAS results. Additional studies that take into account the complex allelic architecture at this locus are needed to confirm these findings

    Genetic variation of Glucose Transporter-1 (GLUT1) and albuminuria in 10,278 European Americans and African Americans: a case-control study in the Atherosclerosis Risk in Communities (ARIC) Study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Evidence suggests glucose transporter-1(<it>GLUT1</it>) genetic variation affects diabetic nephropathy and albuminuria. Our aim was to evaluate associations with albuminuria of six <it>GLUT1 </it>single nucleotide polymorphisms(SNPs), particularly <it>XbaI </it>and the previously associated <it>Enhancer-2(Enh2</it>) SNP.</p> <p>Methods</p> <p>A two-stage case-control study was nested in a prospective cohort study of 2156 African Americans and 8122 European Americans with urinary albumin-to-creatinine ratio(ACR). Cases comprised albuminuria(N = 825; ≥ 30 μg/mg) and macroalbuminuria(N = 173; ≥ 300 μg/mg). ACR < 30 μg/mg classified controls(n = 9453). Logistic regression and odds ratios(OR) assessed associations. The evaluation phase(stage 1, n = 2938) tested associations of albuminuria(n = 305) with six <it>GLUT1 </it>SNPs: rs841839, rs3768043, rs2297977, <it>Enh2</it>(rs841847) <it>Xba</it>I(rs841853), and rs841858. <it>Enh2 </it>was examined separately in the replication phase(stage 2, n = 7340) and the total combined sample (n = 10,278), with all analyses stratified by race and type 2 diabetes.</p> <p>Results</p> <p>In European Americans, after adjusting for diabetes and other <it>GLUT1 </it>SNPs in stage 1, <it>Enh2 </it>risk genotype(TT) was more common in albuminuric cases(OR = 3.37, P = 0.090) whereas <it>XbaI </it>(OR = 0.94, p = 0.931) and remaining SNPs were not. In stage 1, the <it>Enh2 </it>association with albuminuria was significant among diabetic European Americans(OR = 2.36, P = 0.025). In African Americans, <it>Enh2 </it>homozygosity was rare(0.3%); <it>XbaI </it>was common(18.0% AA) and not associated with albuminuria. In stage 2(n = 7,340), <it>Enh2 </it>risk genotype had increased but non-significant OR among diabetic European Americans(OR = 1.66, P = 0.192) and not non-diabetics(OR = 0.99, p = 0.953), not replicating stage 1. Combining stages 1 and 2, <it>Enh2 </it>was associated with albuminuria(OR 2.14 [1.20-3.80], P = 0.009) and macroalbuminuria(OR 2.69, [1.02-7.09], P = 0.045) in diabetic European Americans. The <it>Enh2 </it>association with macroalbuminuria among non-diabetic European Americans with fasting insulin(OR = 1.84, P = 0.210) was stronger at the highest insulin quartile(OR = 4.08, P = 0.040).</p> <p>Conclusions</p> <p>As demonstrated with type 1 diabetic nephropathy, the <it>GLUT1 Enh2 </it>risk genotype, instead of <it>Xba</it>I, may be associated with type 2 diabetic albuminuria among European Americans, though an association is not conclusive. The association among diabetic European Americans found in stage 1 was not replicated in stage 2; however, this risk association was evident after combining all diabetic European Americans from both stages. Additionally, our results suggest this association may extend to non-diabetics with high insulin concentrations. Rarity of the <it>Enh2 </it>risk genotype among African Americans precludes any definitive conclusions, although data suggest a risk-enhancing role.</p

    Biomarkers and degree of atherosclerosis are independently associated with incident atherosclerotic cardiovascular disease in a primary prevention cohort: The ARIC study

    Get PDF
    Biomarkers and atherosclerosis imaging have been studied individually for association with incident cardiovascular disease (CVD); however, limited data exist on whether the biomarkers are associated with events with a similar magnitude in the presence of atherosclerosis. In this study, we assessed whether the presence of atherosclerosis as measured by carotid intima media thickness (cIMT) affects the association between biomarkers known to be associated with coronary heart disease (CHD) and incident cardiovascular disease (CVD) in a primary prevention cohort

    The impact of multiple single day blood pressure readings on cardiovascular risk estimation: The Atherosclerosis Risk in Communities study

    Get PDF
    To determine the magnitude of change in estimated cardiovascular disease risk when multiple same day blood pressure measurements are used in estimating coronary heart disease (CHD), heart failure (HF) and stroke risks

    High-Level Expression of Various Apolipoprotein (a) Isoforms by "Transferrinfection". The Role of Kringle IV Sequences in the Extracellular Association with Low-Density Lipoprotein

    Get PDF
    Characterization of the assembly of lipoprotein(a) [Lp(a)] is of fundamental importance to understanding the biosynthesis and metabolism of this atherogenic lipoprotein. Since no established cell lines exist that express Lp(a) or apolipoprotein(a) [apo(a)], a "transferrinfection" system for apo(a) was developed utilizing adenovirus receptor- and transferrin receptor-mediated DNA uptake into cells. Using this method, different apo(a) cDNA constructions of variable length, due to the presence of 3, 5, 7, 9, 15, or 18 internal kringle IV sequences, were expressed in cos-7 cells or CHO cells. All constructions contained kringle IV-36, which includes the only unpaired cysteine residue (Cys-4057) in apo(a). r-Apo(a) was synthesized as a precursor and secreted as mature apolipoprotein into the medium. When medium containing r-apo(a) with 9, 15, or 18 kringle IV repeats was mixed with normal human plasma LDL, stable complexes formed that had a bouyant density typical of Lp(a). Association was substantially decreased if Cys-4057 on r-apo(a) was replaced by Arg by site-directed mutagenesis or if Cys-4057 was chemically modified. Lack of association was also observed with r-apo(a) containing only 3, 5, or 7 kringle IV repeats without "unique kringle IV sequences", although Cys-4057 was present in all of these constructions. Synthesis and secretion of r-apo(a) was not dependent on its sialic acid content. r-Apo(a) was expressed even more efficiently in sialylation-defective CHO cells than in wild-type CHO cells. In transfected CHO cells defective in the addition of N-acetylglucosamine, apo(a) secretion was found to be decreased by 50%. Extracellular association with LDL was not affected by the carbohydrate moiety of r-apo(a), indicating a protein-protein interaction between r-apo(a) and apoB. These results show that, besides kringle IV-36, other kringle IV sequences are necessary for the extracellular association of r-apo(a) with LDL. Changes in the carbohydrate moiety of apo(a), however, do not affect complex formation

    Common carotid artery intima-media thickness is as good as carotid intima-media thickness of all carotid artery segments in improving prediction of coronary heart disease risk in the Atherosclerosis Risk in Communities (ARIC) study

    Get PDF
    Carotid intima–media thickness (CIMT) and plaque information can improve coronary heart disease (CHD) risk prediction when added to traditional risk factors (TRF). However, obtaining adequate images of all carotid artery segments (A-CIMT) may be difficult. Of A-CIMT, the common carotid artery intima–media thickness (CCA-IMT) is relatively more reliable and easier to measure. We evaluated whether CCA-IMT is comparable to A-CIMT when added to TRF and plaque information in improving CHD risk prediction in the Atherosclerosis Risk in Communities (ARIC) study

    Association of Circulating Matrix Metalloproteinases With Carotid Artery Characteristics: The Atherosclerosis Risk in Communities Carotid MRI Study

    Get PDF
    To examine the relationship of plasma levels of matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinase-1 (TIMP-1) with carotid artery characteristics measured by magnetic resonance imaging (MRI) in a cross-sectional investigation among Atherosclerosis Risk in Communities (ARIC) Carotid MRI Study participants

    Five Blood Pressure Loci Identified by an Updated Genome-Wide Linkage Scan: Meta-Analysis of the Family Blood Pressure Program

    Get PDF
    Background A preliminary genome-wide linkage analysis of blood pressure in the Family Blood Pressure Program (FBPP) was reported previously. We harnessed the power and ethnic diversity of the final pooled FBPP dataset to identify novel loci for blood pressure thereby enhancing localization of genes containing less common variants with large effects on blood pressure levels and hypertension. Methods We performed one overall and 4 race-specific meta-analyses of genome-wide blood pressure linkage scans using data on 4,226African-American, 2,154 Asian, 4,229 Caucasian, and 2,435 Mexican- American participants (total N = 13,044). Variance components models were fit to measured (raw) blood pressure levels and two types of antihypertensive medication adjusted blood pressure phenotypes within each of 10 subgroups defined by race and network. A modified Fisher's method was used to combine the P values for each linkage marker across the 10 subgroups. Results Five quantitative trait loci (QTLs) were detected on chromosomes 6p22.3, 8q23.1, 20q13.12, 21q21.1, and 21q21.3 based on significant linkage evidence (defined by logarithm of odds (lod) score ≥3) in at least one meta-analysis and lod scores ≥1 in at least 2 subgroups defined by network and race. The chromosome 8q23.1 locus was supported by Asian-, Caucasian-, and Mexican-American-specific meta-analyses. Conclusions The new QTLs reported justify new candidate gene studies. They may help support results from genome-wide association studies (GWAS) that fall in these QTL regions but fail to achieve the genome-wide significance. American Journal of Hypertension advance online publication 9 December 2010;doi:10.1038/ajh.2010.23
    corecore