149 research outputs found
Critical behavior at edge singularities in one dimensional spin models
In ferromagnetic spin models above the critical temperature ()
the partition function zeros accumulate at complex values of the magnetic field
() with a universal behavior for the density of zeros \rho (H) \sim | H -
H_E |^{\sg}. The critical exponent \sg is believed to be universal at each
space dimension and it is related to the magnetic scaling exponent via
\sg = (d-y_h)/y_h. In two dimensions we have y_h=12/5 (\sg = -1/6) while
y_h=2 (\sg=-1/2) in . For the one dimensional Blume-Capel and
Blume-Emery-Griffiths models we show here, for different temperatures, that a
new value y_h=3 (\sg =-2/3) can emerge if we have a triple degeneracy of the
transfer matrix eigenvalues.Comment: to appear in Phys. Rev. E, 16 pages, 3 figure
The multiferroic phase of DyFeO:an ab--initio study
By performing accurate ab-initio density functional theory calculations, we
study the role of electrons in stabilizing the magnetic-field-induced
ferroelectric state of DyFeO. We confirm that the ferroelectric
polarization is driven by an exchange-strictive mechanism, working between
adjacent spin-polarized Fe and Dy layers, as suggested by Y. Tokunaga [Phys.
Rev. Lett, \textbf{101}, 097205 (2008)]. A careful electronic structure
analysis suggests that coupling between Dy and Fe spin sublattices is mediated
by Dy- and O- hybridization. Our results are robust with respect to the
different computational schemes used for and localized states, such as
the DFT+ method, the Heyd-Scuseria-Ernzerhof (HSE) hybrid functional and the
GW approach. Our findings indicate that the interaction between the and
sublattice might be used to tailor ferroelectric and magnetic properties of
multiferroic compounds.Comment: 6 pages, 4 figures-Revised versio
Exchange bias and interface electronic structure in Ni/Co3O4(011)
A detailed study of the exchange bias effect and the interfacial electronic
structure in Ni/Co3O4(011) is reported. Large exchange anisotropies are
observed at low temperatures, and the exchange bias effect persists to
temperatures well above the Neel temperature of bulk Co3O4, of about 40 K: to
~80 K for Ni films deposited on well ordered oxide surfaces, and ~150 K for Ni
films deposited on rougher Co3O4 surfaces. Photoelectron spectroscopy
measurements as a function of Ni thickness show that Co reduction and Ni
oxidation occur over an extended interfacial region. We conclude that the
exchange bias observed in Ni/Co3O4, and in similar ferromagnetic metallic/Co3O4
systems, is not intrinsic to Co3O4 but rather due to the formation of CoO at
the interface.Comment: 8 pages, 6 figures. Accepted for publication in Physical Review B
Interface alloying and magnetic properties of Fe/Rh multilayers
Rh(20 Å)/57Fe(tFe) multilayers with Fe thicknesses tFe of 2, 5, 10, and 15 Å prepared by alternate evaporation in UHV have been investigated by x-ray diffraction (XRD), Mössbauer spectroscopy, and SQUID magnetometry. First- and second-order superstructure Bragg peaks (but no higher-order peaks) in small-angle XRD patterns suggest some compositional modulation. Mössbauer spectra taken at 4.2 K are characterized by a distribution P(Bhf) of hyperfine fields Bhf. Peaks observed in the P(Bhf) curves near 17 and 35 T are assigned to an fcc-RhFe interface alloy (~7–24 at. % Fe) with spin-glasslike properties and to a disordered ferromagnetic bcc-FeRh alloy (~96 at. % Fe), respectively. The magnetic transition temperature of the fcc alloy was found to be 23 and 45 K for tFe=2 and 5 Å, respectively, and Bhf follows a T3/2 law. For tFe=2 Å, spin-glasslike behavior was observed by magnetometry. Journal of Applied Physics is copyrighted by The American Institute of Physics
Electric field effects on magnetotransport properties of multiferroic Py/YMnO3/Pt heterostructures
We report on the exchange bias between antiferromagnetic and ferroelectric
hexagonal YMnO3 epitaxial thin films sandwiched between a metallic electrode
(Pt) and a soft ferromagnetic layer (Py). Anisotropic magnetoresistance
measurements are performed to monitor the presence of an exchange bias field.
When the heteroestructure is biased by an electric field, it turns out that the
exchange bias field is suppressed. We discuss the dependence of the observed
effect on the amplitude and polarity of the electric field. Particular
attention is devoted to the role of current leakage across the ferroelectric
layer.Comment: Accepted for publication in Philosophical Magazine Letters (Special
issue on multiferroics
Robust isothermal electric switching of interface magnetization: A route to voltage-controlled spintronics
Roughness-insensitive and electrically controllable magnetization at the
(0001) surface of antiferromagnetic chromia is observed using magnetometry and
spin-resolved photoemission measurements and explained by the interplay of
surface termination and magnetic ordering. Further, this surface in placed in
proximity with a ferromagnetic Co/Pd multilayer film. Exchange coupling across
the interface between chromia and Co/Pd induces an electrically controllable
exchange bias in the Co/Pd film, which enables a reversible isothermal (at room
temperature) shift of the global magnetic hysteresis loop of the Co/Pd film
along the magnetic field axis between negative and positive values. These
results reveal the potential of magnetoelectric chromia for spintronic
applications requiring non-volatile electric control of magnetization.Comment: Single PDF file: 27 pages, 6 figures; version of 12/30/09; submitted
to Nature Material
The 2020 magnetism roadmap
Following the success and relevance of the 2014 and 2017 Magnetism Roadmap articles, this 2020 Magnetism Roadmap edition takes yet another timely look at newly relevant and highly active areas in magnetism research. The overall layout of this article is unchanged, given that it has proved the most appropriate way to convey the most relevant aspects of today's magnetism research in a wide variety of sub-fields to a broad readership. A different group of experts has again been selected for this article, representing both the breadth of new research areas, and the desire to incorporate different voices and viewpoints. The latter is especially relevant for thistype of article, in which one's field of expertise has to be accommodated on two printed pages only, so that personal selection preferences are naturally rather more visible than in other types of articles. Most importantly, the very relevant advances in the field of magnetism research in recent years make the publication of yet another Magnetism Roadmap a very sensible and timely endeavour, allowing its authors and readers to take another broad-based, but concise look at the most significant developments in magnetism, their precise status, their challenges, and their anticipated future developments. While many of the contributions in this 2020 Magnetism Roadmap edition have significant associations with different aspects of magnetism, the general layout can nonetheless be classified in terms of three main themes: (i) phenomena, (ii) materials and characterization, and (iii) applications and devices. While these categories are unsurprisingly rather similar to the 2017 Roadmap, the order is different, in that the 2020 Roadmap considers phenomena first, even if their occurrences are naturally very difficult to separate from the materials exhibiting such phenomena. Nonetheless, the specifically selected topics seemed to be best displayed in the order presented here, in particular, because many of the phenomena or geometries discussed in (i) can be found or designed into a large variety of materials, so that the progression of the article embarks from more general concepts to more specific classes of materials in the selected order. Given that applications and devices are based on both phenomena and materials, it seemed most appropriate to close the article with the application and devices section (iii) once again. The 2020 Magnetism Roadmap article contains 14 sections, all of which were written by individual authors and experts, specifically addressing a subject in terms of its status, advances, challenges and perspectives in just two pages. Evidently, this two-page format limits the depth to which each subject can be described. Nonetheless, the most relevant and key aspects of each field are touched upon, which enables the Roadmap as whole to give its readership an initial overview of and outlook into a wide variety of topics and fields in a fairly condensed format. Correspondingly, the Roadmap pursues the goal of giving each reader a brief reference frame of relevant and current topics in modern applied magnetism research, even if not all sub-fields can be represented here. The first block of this 2020 Magnetism Roadmap, which is focussed on (i) phenomena, contains five contributions, which address the areas of interfacial Dzyaloshinskii-Moriya interactions, and two-dimensional and curvilinear magnetism, as well as spin-orbit torque phenomena and all optical magnetization reversal.
All of these contributions describe cutting edge aspects of rather fundamental physical processes and properties, associated with new and improved magnetic materials' properties, together with potential developments in terms of future devices and technology. As such, they form part of a widening magnetism 'phenomena reservoir' for utilization in applied magnetism and related device technology. The final block (iii) of this article focuses on such applications and device-related fields in four contributions relating to currently active areas of research, which are of course utilizing magnetic phenomena to enable specific functions. These contributions highlight the role of magnetism or spintronics in the field of neuromorphic and reservoir computing, terahertz technology, and domain wall-based logic. One aspect common to all of these application-related contributions is that they are not yet being utilized in commercially available technology; it is currently still an open question, whether or not such technological applications will be magnetism-based at all in the future, or if other types of materials and phenomena will yet outperform magnetism. This last point is actually a very good indication of the vibrancy of applied magnetism research today, given that it demonstrates that magnetism research is able to venture into novel application fields, based upon its portfolio of phenomena, effects and materials. This materials portfolio in particular defines the central block (ii) of this article, with its five contributions interconnecting phenomena with devices, for which materials and the characterization of their properties is the decisive discriminator between purely academically interesting aspects and the true viability of real-life devices, because only available materials and their associated fabrication and characterization methods permit reliable technological implementation. These five contributions specifically address magnetic films and multiferroic heterostructures for the purpose of spin electronic utilization, multi-scale materials modelling, and magnetic materials design based upon machine-learning, as well as materials characterization via polarized neutron measurements. As such, these contributions illustrate the balanced relevance of research into experimental and modelling magnetic materials, as well the importance of sophisticated characterization methods that allow for an ever-more refined understanding of materials. As a combined and integrated article, this 2020 Magnetism Roadmap is intended to be a reference point for current, novel and emerging research directions in modern magnetism, just as its 2014 and 2017 predecessors have been in previous years
Quantum Spin Glasses
Ising spin glasses in a transverse field exhibit a zero temperature quantum
phase transition, which is driven by quantum rather than thermal fluctuations.
They constitute a universality class that is significantly different from the
classical, thermal phase transitions. Most interestingly close to the
transition in finite dimensions a quantum Griffiths phase leads to drastic
consequences for various physical quantities: for instance diverging magnetic
susceptibilities are observable over a whole range of transverse field values
in the disordered phase.Comment: 10 pages LaTeX (Springer Lecture Notes style file included), 1
eps-figure; Review article for XIV Sitges Conference: Complex Behavior of
Glassy System
- …