151 research outputs found

    Comparison of Howland and General Impedance Converter (GIC) circuit based current sources for bio-impedance measurements

    Get PDF
    The current source is a key component in bio-impedance measurement systems. The accuracy of the current source can be measured in terms of its output impedance together with other parameters, with certain applications demanding extremely high output impedance. This paper presents an investigation and comparison of different current source designs based on the Enhanced Howland circuit combined with a General Impedance Converter (GIC) circuit using both ideal and non-ideal operational amplifiers. Under differing load conditions two different settings of the GIC are evaluated and the results are compared to show its performance settings. Whilst the study has shown that over a wide bandwidth (i.e. 100Hz-100MHz) the output impedance is limited, operation over a more limited range offers output impedance in the Giga-ohm range, which can be considered as being infinite

    The host galaxies of FeLoBAL quasars at z ∼ 0.9 are not dominated by recent major mergers

    Get PDF
    Theoretical models have suggested an evolutionary model for quasars, in which most of luminous quasars are triggered by major mergers. It is also postulated that reddening as well as powerful outflows indicate an early phase of activity, close to the merger event. We test this model on a sample of quasars with powerful low ionization outflows seen in broad Iron absorption lines (FeLoBAL). This sample of objects show strong reddening in the optical and fast (\sim0.1c) high column density outflows. We present HST WFC3/IR F160W imaging of 10 FeLoBAL host galaxies at redshifts z\sim0.9 (λrest8500A˚\lambda_{rest}\sim8500\AA). We compare the host galaxy morphologies and merger signatures of FeLoBALs to luminous blue non-BAL quasars from Villforth et al. 2017 of comparable luminosity, which show no excess of merger features compared to inactive control samples. If FeLoBAL quasars are indeed in a young evolutionary state, close in time to the initial merging event, they should have strong merger features. We find that the host galaxies of FeLoBAL quasars are of comparable luminosity to the host galaxies of optical quasars and show no enhanced merger rates. When looking only at quasars without strong PSF residuals, an enhancement in disturbed and merger rates is seen. While FeLoBAL hosts show weak enhancements over a control of blue quasars, their host galaxies are not dominated by recent major mergers.Comment: accepted for publication in MNRA

    MASCOT: molecular gas depletion times and metallicity gradients – evidence for feedback in quenching active galaxies

    Get PDF
    We present results from the first public data release of the MaNGA-ARO Survey of CO Targets (MASCOT), focusing our study on galaxies whose star formation rates and stellar masses place them below the ridge of the star-forming main sequence. In optically selected type 2 AGN/low-ionization nuclear emission regions (LINERs)/Composites, we find an empirical relation between gas-phase metallicity gradients ∇Z and global molecular gas depletion times tdep=MH2/SFR with ‘more quenched’ systems showing flatter/positive gradients. Our results are based on the O3N2 metallicity diagnostic (applied to star-forming regions within a given galaxy), which was recently suggested to also be robust against emission by diffuse ionized gas (DIG) and LINERs. We conduct a systematic investigation into possible drivers of the observed ∇Z − tdep relation (ouflows, gas accretion, in situ star formation, mergers, and morphology). We find a strong relation between ∇Z or tdep and centralized outflow strength traced by the [O III] velocity broadening. We also find signatures of suppressed star formation in the outskirts in AGN-like galaxies with long depletion times and an enhancement of metals in the outer regions. We find no evidence of inflows impacting the metallicity gradients, and none of our results are found to be significantly affected by merger activity or morphology. We thus conclude that the observed ∇Z–tdep relation may stem from a combination of metal redistribution via weak feedback, and a connection to in situ star formation via a resolved mass-metallicity–SFR relation. © 2022 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society.DW and CB are supported through the Emmy Noether Programme of the German Research Foundation. MA acknowledges support from FONDECYT grant 1211951, CONICYT + PCI + INSTITUTO MAX PLANCK DE ASTRONOMIA MPG190030, CONICYT+PCI + REDES 190194, and ANID BASAL project FB210003. WB acknowledges support from the ERC Advanced Grant 695671, ‘QUENCH’ and from the Science and Technology Facilities Council (STFC). Funding for the Sloan Digital Sky Survey IV has been provided by the Alfred P. Sloan Foundation, the U.S. Department of Energy Office of Science, and the Participating Institutions. SDSS-IV acknowledges support and resources from the Center for High Performance Computing at the University of Utah.With funding from the Spanish government through the "Severo Ochoa Centre of Excellence" accreditation (CEX2021-001131-S).Peer reviewe

    Cross-calibration of CO- versus dust-based gas masses and assessment of the dynamical mass budget in Herschel-SDSS Stripe82 galaxies

    Get PDF
    We present a cross-calibration of CO- and dust-based molecular gas masses at z ≤ 0.2. Our results are based on a survey with the IRAM 30-m telescope collecting CO(1–0) measurements of 78 massive (logM⋆/M⊙> 10) galaxies with known gas-phase metallicities and with IR photometric coverage from Wide-field Infrared Survey Explorer(WISE; 22 μm) and Herschel Spectral and Photometric Imaging Receiver (SPIRE; 250, 350, 500μm). We find a tight relation (∼0.17 dex scatter) between the gas masses inferred from CO and dust continuum emission, with a minor systematic offset of 0.05 dex. The two methods can be brought into agreement by applying a metallicity-dependent adjustment factor (∼0.13 dex scatter). We illustrate that the observed offset is consistent with a scenario in which dust traces not only molecular gas but also part of the HI reservoir, residing in the H2-dominated region of the galaxy. Observations of the CO(2–1) to CO(1–0) line ratio for two-thirds of the sample indicate a narrow range in excitation properties, with a median ratio of luminosities ⟨R21⟩ ∼ 0.64. Finally, we find dynamical mass constraints from spectral line profile fitting to agree well with the anticipated mass budget enclosed within an effective radius, once all mass components (stars, gas, and dark matter) are accounted for

    An introductory view on archaeoastronomy

    Get PDF
    Archaeoastronomy is still a marginalised topic in academia and is described by the Sophia Centre, the only UK institution offering a broader MA containing this field, as ‘the study of the incorporation of celestial orientation, alignments or symbolism in human monuments and architecture’. By many it is associated with investigating prehistoric monuments such as Stonehenge and combining astronomy and archaeology. The following will show that archaeoastronomy is far more than just an interdisciplinary field linking archaeology and astronomy. It merges aspects of anthropology, ethno-astronomy and even educational research, and is possibly better described as cultural astronomy. In the past decades it has stepped away from its quite speculative beginnings that have led to its complete rejection by the archaeology community. Overcoming these challenges it embraced full heartedly solid scientific and statistical methodology and achieved more credibility. However, in recent times the humanistic influences of a cultural context motivate a new generation of archaeoastronomers that are modernising this subject; and humanists might find it better described as post-modern archaeoastronomy embracing the pluralism of today’s academic approach to landscape and ancient people

    First results from the JWST Early Release Science Program Q3D: Benchmark Comparison of Optical and Mid-IR Tracers of a Dusty, Ionized Red Quasar Wind at z=0.435

    Full text link
    The [OIII] 5007 A emission line is the most common tracer of warm, ionized outflows in active galactic nuclei across cosmic time. JWST newly allows us to use mid-infrared spectral features at both high spatial and spectral resolution to probe these same winds. Here we present a comparison of ground-based, seeing-limited [OIII] and space-based, diffraction-limited [SIV] 10.51 micron maps of the powerful, kpc-scale outflow in the Type 1 red quasar SDSS J110648.32+480712.3. The JWST data are from the Mid-InfraRed Instrument (MIRI). There is a close match in resolution between the datasets (0."4--0."6), in ionization potential of the O+2 and S+3 ions (35 eV), and in line sensitivity (1e-17 to 2e-17 erg/s/cm2/arcsec2). The [OIII] and [SIV] line shapes match in velocity and linewidth over much of the 20 kpc outflowing nebula, and [SIV] is the brightest line in the rest-frame 3.5--19.5 micron range, demonstrating its usefulness as a mid-IR probe of quasar outflows. [OIII] is nevertheless intriniscally brighter and provides better contrast with the point-source continuum, which is strong in the mid-IR. There is a strong anticorrelation of [OIII]/[SIV] with average velocity, which is consistent with a scenario of differential obscuration between the approaching (blueshifted) and receding (redshifted) sides of the flow. The dust in the wind may also obscure the central quasar, consistent with models that attribute red quasar extinction to dusty winds.Comment: Submitted to ApJ

    Belle II Executive Summary

    Full text link
    Belle II is a Super BB Factory experiment, expected to record 50 ab1^{-1} of e+ee^+e^- collisions at the SuperKEKB accelerator over the next decade. The large samples of BB mesons, charm hadrons, and tau leptons produced in the clean experimental environment of e+ee^+e^- collisions will provide the basis of a broad and unique flavor-physics program. Belle II will pursue physics beyond the Standard Model in many ways, for example: improving the precision of weak interaction parameters, particularly Cabibbo-Kobayashi-Maskawa (CKM) matrix elements and phases, and thus more rigorously test the CKM paradigm, measuring lepton-flavor-violating parameters, and performing unique searches for missing-mass dark matter events. Many key measurements will be made with world-leading precision.Comment: 7 pages, to be submitted to the "Rare and Precision Measurements Frontier" of the APS DPF Community Planning Exercise Snowmass 202

    Search for Axionlike Particles Produced in e⁺ e⁻ Collisions at Belle II

    Get PDF
    International audienceWe present a search for the direct production of a light pseudoscalar a decaying into two photons with the Belle II detector at the SuperKEKB collider. We search for the process e+e-→γa, a→γγ in the mass range 0.2

    Search for Axionlike Particles Produced in e+e- Collisions at Belle II

    Get PDF
    We present a search for the direct production of a light pseudoscalar a decaying into two photons with the Belle II detector at the SuperKEKB collider. We search for the process e+e-→γa, a→γγ in the mass range 0.2<9.7 GeV/c2 using data corresponding to an integrated luminosity of (445±3) pb-1. Light pseudoscalars interacting predominantly with standard model gauge bosons (so-called axionlike particles or ALPs) are frequently postulated in extensions of the standard model. We find no evidence for ALPs and set 95% confidence level upper limits on the coupling strength gaγγ of ALPs to photons at the level of 10-3 GeV-1. The limits are the most restrictive to date for 0.2<1 GeV/c2
    corecore