376 research outputs found

    Better Barking for ABS: Reform Proposals for the Asset-Backed Securities Market

    Get PDF
    The market for asset-backed securities (ABS) – financial instruments backed by underlying assets such as mortgages – suffered a major setback in 2007, as a cascade of downgrades and defaults brought turmoil to credit markets and the world economy. Authorities in the United States have since proposed sweeping changes to the ABS market. The Canadian Securities Administrators, representing provincial securities commissions, recently released a discussion paper proposing similar reforms, which would require: (i) sharply enhanced transparency in ABS structures, (ii) CEO certification of the adequacy of such structures, and (iii) disclosure of previous asset repurchases by the securities’ sponsor.Financial Services, asset-backed securities (ABS), credit markets

    The Canadian ABS Market: Where Do We Go From Here?

    Get PDF
    The asset-backed securities (ABS) market suffered a major setback during the financial crisis that began in 2007. Its role in the broader market collapse has been well documented, but the need to restore a healthy ABS market is equally clear. Indeed, North American policymakers have readily acknowledged that this market must play a major role in the global economic recovery and policymakers have recently moved beyond addressing the urgency of restarting the ABS market to considering its reform. An analysis of current reform proposals guides suggestions for a policy approach that reflects Canadian market realities. Specifically, it would be prudent in the Canadian context to impose new disclosure requirements for all public market medium-term note issuance.Financial Services, asset-backed securities (ABS), ABS market reforms, Canadian ABS market, global economic recovery

    Electric field control of multiferroic domains in Ni3_3V2_2O8_8 imaged by X-ray polarization enhanced topography

    Full text link
    The magnetic structure of multiferroic Ni3_3V2_2O8_8 has been investigated using non-resonant X-ray magnetic scattering. Incident circularly polarized X-rays combined with full polarization analysis of the scattered beam is shown to yield high sensitivity to the components of the cycloidal magnetic order, including their relative phases. New information on the magnetic structure in the ferroelectric phase is obtained, where it is found that the magnetic moments on the "cross-tie" sites are quenched relative to those on the "spine" sites. This implies that the onset of ferroelectricity is associated mainly with spine site magnetic order. We also demonstrate that our technique enables the imaging of multiferroic domains through polarization enhanced topography. This approach is used to image the domains as the sample is cycled by an electric field through its hysteresis loop, revealing the gradual switching of domains without nucleation.Comment: 9 pages, 6 figure

    A potential sterile neutrino search utilizing spectral distortion in a two-reactor/one-detector configuration

    Full text link
    There is an observed deficit of about 6% in the expected rate of anti-neutrino interactions when averaging over many different reactor experiments. While the significance of the deficit is low (98.6 % CL), there is speculation that a non-interacting "sterile" neutrino could be the cause. In this paper we explore the possibility of a two-reactor/one-detector experiment at intermediate distances (100-500 meters) to look for a sterile neutrino in the mass range implied by this deficit. A method for probing m^2 phase space is developed using interference patterns between two oscillated spectra at different baselines. This method is used to investigate the potential sensitivity of the Double Chooz experiment, which has a single Near Detector at distances of 351 m and 465 m from two reactors of identical design. We conclude that Double Chooz could investigate sterile neutrino in the m^2 range of 0.002 to 0.5 eV^2 over 5 years of near detector running.Accepted manuscrip

    Resonant X-Ray Magnetic Scattering from CoO

    Full text link
    We analyze the recent experiment [W. Neubeck {\em et al.}, Phys. Rev. B \vol(60,1999,R9912)] for the resonant x-ray magnetic scattering (RXMS) around the K edge of Co in the antiferromagnet CoO. We propose a mechanism of the RXMS to make the 4p4p states couple to the magnetic order: the intraatomic exchange interaction between the 4p4p and the 3d3d states and the pp-dd mixing to the 3d3d states of neighboring Co atoms. These couplings induce the orbital moment in the 4p4p states and make the scattering tensor antisymmetric. Using a cluster model, we demonstrate that this modification gives rise to a large RXMS intensity in the dipole process, in good agreement with the experiment. We also find that the pre-edge peak is generated by the transition to the 3d3d states in the quadrupole process, with negligible contribution of the dipole process. We also discuss the azimuthal angle dependence of the intensity.Comment: 15 pages, 8 figure

    Profile of the U 5f magnetization in U/Fe multilayers

    Full text link
    Recent calculations, concerning the magnetism of uranium in the U/Fe multilayer system have described the spatial dependence of the 5f polarization that might be expected. We have used the x-ray resonant magnetic reflectivity technique to obtain the profile of the induced uranium magnetic moment for selected U/Fe multilayer samples. This study extends the use of x-ray magnetic scattering for induced moment systems to the 5f actinide metals. The spatial dependence of the U magnetization shows that the predominant fraction of the polarization is present at the interfacial boundaries, decaying rapidly towards the center of the uranium layer, in good agreement with predictions.Comment: 7 pages, 6 figure

    Magnetic Structure Of Sm2 Ir In8 Determined By X-ray Resonant Magnetic Scattering

    Get PDF
    The magnetic structure of the intermetallic antiferromagnet Sm2 Ir In8 was determined using x-ray resonant magnetic scattering. Below TN =14.2 K, Sm2 Ir In8 has a commensurate antiferromagnetic structure with a propagation vector η = (12,0,0). The Sm magnetic moments lie in the ab plane and are rotated roughly 18° away from the a axis. The magnetic structure of this compound was obtained by measuring the strong dipolar resonant peak whose enhancement was of over 2 orders of magnitude at the L2 edge. At the L3 edge, both quadrupolar and dipolar features were observed in the energy line shape. The magnetic structure and properties of Sm2 Ir In8 are found to be consistent with the general trend already seen for the Nd-, Tb-, and the Ce-based compounds from the Rm Mn In3m+2n family (R=rare earth; M=Rh or Ir; m=1,2; n=0,1), where the crystalline electrical field effects determine the direction of magnetic moments and the TN evolution in the series. The measured Néel temperature for Sm2 Ir In8 is slightly suppressed when compared to the TN of the parent cubic compound Sm In3. © 2007 The American Physical Society.7610Hegger, H., Petrovic, C., Moshopoulou, E.G., Hundley, M.F., Sarrao, J.L., Fisk, Z., Thompson, J.D., (2000) Phys. Rev. Lett., 84, p. 4986. , PRLTAO 0031-9007 10.1103/PhysRevLett.84.4986Petrovic, C., Movshovich, R., Jaime, M., Pagliuso, P.G., Hundley, M.F., Sarrao, J.L., Thompson, J.D., Fisk, Z., (2001) Europhys. Lett., 354-359, p. 4986. , EULEEJ 0295-5075Petrovic, C., Pagliuso, P.G., Hundley, M.F., Movshovich, R., Sarrao, J.L., Thompson, J.D., Fisk, Z., Monthoux, P., (2001) J. Phys.: Condens. Matter, 13, p. 337. , JCOMEL 0953-8984 10.1088/0953-8984/13/17/103Thompson, J.D., (2001) J. Magn. Magn. Mater., 226-230, p. 5. , JMMMDC 0304-8853Pagliuso, P.G., Thompson, J.D., Hundley, M.F., Sarrao, J.L., Fisk, Z., (2001) Phys. Rev. B, 63, p. 054426. , PRBMDO 0163-1829 10.1103/PhysRevB.63.054426Pagliuso, P.G., Thompson, J.D., Hundley, M.F., Sarrao, J.L., (2000) Phys. Rev. B, 62, p. 12266. , PRBMDO 0163-1829 10.1103/PhysRevB.62.12266Lora-Serrano, R., Giles, C., Granado, E., Garcia, D.J., Miranda, E., Agüero, O., Mendonça Ferreira, L., Pagliuso, P.G., (2006) Phys. Rev. B, 74, p. 214404. , PRBMDO 0163-1829 10.1103/PhysRevB.74.214404Chen, G., Ohara, S., Hedo, M., Uwatoko, Y., Saito, K., Sorai, M., Sakamoto, I., (2002) J. Phys. Soc. Jpn., 71, p. 2836. , JUPSAU 0031-9015 10.1143/JPSJ.71.2836Moshopoulou, E.G., Fisk, Z., Sarrao, J.L., Thompson, J.D., (2001) J. Solid State Chem., 158, p. 25. , JSSCBI 0022-4596 10.1006/jssc.2000.9052Moshopoulou, E.G., Ibberson, R.M., Sarrao, J.L., Thompson, J.D., Fisk, Z., (2006) Acta Crystallogr., Sect. B: Struct. Sci., 62, p. 173. , ASBSDK 0108-7681Buschow, K.H.J., De Wijn, H.W., Van Diepen, A.M., (1969) J. Chem. Phys., 50, p. 137. , JCPSA6 0021-9606 10.1063/1.1670771Pagliuso, P.G., Petrovic, C., Movshovich, R., Hall, D., Hundley, M.F., Sarrao, J.L., Thompson, J.D., Fisk, Z., (2001) Phys. Rev. B, 64, p. 100503. , PRBMDO 0163-1829 10.1103/PhysRevB.64.100503Pagliuso, P.G., Movshovich, R., Bianchi, A.D., Nicklas, M., Thompson, J.D., Hundley, M.F., Sarrao, J.L., Fisk, Z., (2002) Physica B, 312-313, p. 129. , PHYBE3 0921-4526Pham, L.D., Park, T., Maquilon, S., Thompson, J.D., Fisk, Z., (2006) Phys. Rev. Lett., 97, p. 056404. , PRLTAO 0031-9007 10.1103/PhysRevLett.97.056404Zapf, V.S., Freeman, E.J., Bauer, E.D., Petricka, J., Sirvent, C., Frederick, N.A., Dickey, R.P., Maple, M.B., (2001) Phys. Rev. B, 65, p. 014506. , PRBMDO 0163-1829 10.1103/PhysRevB.65.014506Park, T., Ronning, F., Yuan, H.Q., Salamon, M.B., Movshovich, R., Sarrao, J.L., Thompson, J.D., (2006) Nature (London), 440, p. 65. , NATUAS 0028-0836 10.1038/nature04571Sidorov, V.A., Nicklas, M., Pagliuso, P.G., Sarrao, J.L., Bang, Y., Balatsky, A.V., Thompson, J.D., (2002) Phys. Rev. Lett., 89, p. 157004. , PRLTAO 0031-9007 10.1103/PhysRevLett.89.157004Bianchi, A., Movshovich, R., Vekhter, I., Pagliuso, P.G., Sarrao, J.L., (2003) Phys. Rev. Lett., 91, p. 257001. , PRLTAO 0031-9007 10.1103/PhysRevLett.91.257001Bauer, E.D., Capan, C., Ronning, F., Movshovich, R., Thompson, J.D., Sarrao, J.L., (2005) Phys. Rev. Lett., 94, p. 047001. , PRLTAO 0031-9007 10.1103/PhysRevLett.94.047001Paglione, J., Tanatar, M.A., Hawthorn, D.G., Boaknin, E., Hill, R.W., Ronning, F., Sutherland, M., Canfield, P.C., (2003) Phys. Rev. Lett., 91, p. 246405. , PRLTAO 0031-9007 10.1103/PhysRevLett.91.246405Kumar, R.S., Cornelius, A.L., Sarrao, J.L., (2004) Phys. Rev. B, 70, p. 214526. , PRBMDO 0163-1829 10.1103/PhysRevB.70.214526Oeschler, N., Gegenwart, P., Lang, M., Movshovich, R., Sarrao, J.L., Thompson, J.D., Steglich, F., (2003) Phys. Rev. Lett., 91, p. 076402. , PRLTAO 0031-9007 10.1103/PhysRevLett.91.076402Christianson, A.D., (2004) Phys. Rev. B, 70, p. 134505. , PRBMDO 0163-1829 10.1103/PhysRevB.70.134505Harrison, N., (2004) Phys. Rev. Lett., 93, p. 186405. , PRLTAO 0031-9007 10.1103/PhysRevLett.93.186405Raj, S., (2005) Phys. Rev. B, 71, p. 224516. , PRBMDO 0163-1829 10.1103/PhysRevB.71.224516Hall, D., Palm, E.C., Murphy, T.P., Tozer, S.W., Fisk, Z., Alver, U., Goodrich, R.G., Ebihara, T., (2001) Phys. Rev. B, 64, p. 212508. , PRBMDO 0163-1829 10.1103/PhysRevB.64.212508Hall, D., (2001) Phys. Rev. B, 64, p. 064506. , PRBMDO 0163-1829 10.1103/PhysRevB.64.064506Costa-Quintana, J., López-Aguilar, F., (2003) Phys. Rev. B, 67, p. 132507. , PRBMDO 0163-1829 10.1103/PhysRevB.67.132507Sarrao, J.L., Morales, L.A., Thompson, J.D., Scott, B.L., Stewart, G.R., Wastin, F., Rebizant, J., Lander, G.H., (2002) Nature (London), 420, p. 297. , NATUAS 0028-0836 10.1038/nature01212Bauer, E.D., (2004) Phys. Rev. Lett., 93, p. 147005. , PRLTAO 0031-9007 10.1103/PhysRevLett.93.147005Christianson, A.D., (2005) Phys. Rev. Lett., 95, p. 217002. , PRLTAO 0031-9007 10.1103/PhysRevLett.95.217002Lora-Serrano, R., Mendonça Ferreira, L., Garcia, D.J., Miranda, E., Giles, C., Duque, J.G.S., Granado, E., Pagliuso, P.G., (2006) Physica B, 384, p. 326. , PHYBE3 0921-4526 10.1016/j.physb.2006.06.035Hieu, N.V., (2006) J. Phys. Soc. Jpn., 75, p. 074708. , JUPSAU 0031-9015Malinowski, A., Hundley, M.F., Moreno, N.O., Pagliuso, P.G., Sarrao, J.L., Thompson, J.D., (2003) Phys. Rev. B, 68, p. 184419. , PRBMDO 0163-1829 10.1103/PhysRevB.68.184419Correa, V.F., Tung, L., Hollen, S.M., Pagliuso, P.G., Moreno, N.O., Lashley, J.C., Sarrao, J.L., Lacerda, A.H., (2004) Phys. Rev. B, 69, p. 174424. , PRBMDO 0163-1829 10.1103/PhysRevB.69.174424Granado, E., Pagliuso, P.G., Giles, C., Lora-Serrano, R., Yokaichiya, F., Sarrao, J.L., (2004) Phys. Rev. B, 69, p. 144411. , PRBMDO 0163-1829 10.1103/PhysRevB.69.144411Pagliuso, P.G., (2006) J. Appl. Phys., 99, pp. 08P703. , JAPIAU 0021-8979 10.1063/1.2176109Bao, W., Pagliuso, P.G., Sarrao, J.L., Thompson, J.D., Fisk, Z., Lynn, J.W., Erwin, R.W., (2000) Phys. Rev. B, 62, p. 14621. , PRBMDO 0163-1829 10.1103/PhysRevB.62.R14621Bao, W., Pagliuso, P.G., Sarrao, J.L., Thompson, J.D., Fisk, Z., Lynn, J.W., Erwin, R.W., (2001) Phys. Rev. B, 63, p. 219901. , PRBMDO 0163-1829 10.1103/PhysRevB.63.219901Bao, W., Pagliuso, P.G., Sarrao, J.L., Thompson, J.D., Fisk, Z., Lynn, J.W., (2001) Phys. Rev. B, 64, p. 020401. , PRBMDO 0163-1829 10.1103/PhysRevB.64.020401Chang, S., Pagliuso, P.G., Bao, W., Gardner, J.S., Swainson, I.P., Sarrao, J.L., Nakotte, H., (2002) Phys. Rev. B, 66, p. 132417. , PRBMDO 0163-1829 10.1103/PhysRevB.66.132417Granado, E., Uchoa, B., Malachias, A., Lora-Serrano, R., Pagliuso, P.G., Westfahl Jr., H., (2006) Phys. Rev. B, 74, p. 214428. , PRBMDO 0163-1829 10.1103/PhysRevB.74.214428Kasaya, M., Liu, B., Sera, M., Kasuya, T., Endoh, D., Goto, T., Fujimura, F., (1985) J. Magn. Magn. Mater., 52, p. 289. , JMMMDC 0304-8853 10.1016/0304-8853(85)90282-3Endoh, D., Goto, T., Tamaki, A., Liu, B., Kasaya, M., Fujimura, T., Kasuya, T., (1989) J. Phys. Soc. Jpn., 58, p. 940. , JUPSAU 0031-9015Kletowski, Z., (1998) J. Magn. Magn. Mater., 186, p. 7. , JMMMDC 0304-8853Stunault, A., Dumesnil, K., Dufour, C., Vettier, C., Bernhoeft, N., (2002) Phys. Rev. B, 65, p. 064436. , PRBMDO 0163-1829 10.1103/PhysRevB.65.064436Fisk, Z., Remeika, J.P., (1989) Handbook on the Physics and Chemistry of Rare Earths, 12, p. 53. , edited by J. K. A. Geschneider and E. L. Eyring (Elsevier, Amsterdam/ North-Holland, AmsterdamPaolasini, L., (2007) J. Synchrotron Radiat., 14, p. 301. , JSYRES 0909-0495Hill, J.P., McMorrow, D.F., (1996) Acta Crystallogr., Sect. A: Found. Crystallogr., 52, p. 236. , ACACEQ 0108-7673 10.1107/S0108767395012670Zheludev, A., Hill, J.P., Buttrey, D.J., (1996) Phys. Rev. B, 54, p. 7216. , PRBMDO 0163-1829 10.1103/PhysRevB.54.7216Hill, J.P., Vigliante, A., Gibbs, D., Peng, J.L., Greene, R.L., (1995) Phys. Rev. B, 52, p. 6575. , PRBMDO 0163-1829 10.1103/PhysRevB.52.6575Detlefs, C., Islam, A.H.M.Z., Goldman, A.I., Stassis, C., Canfield, P.C., Hill, J.P., Gibbs, D., (1997) Phys. Rev. B, 55, p. 680. , PRBMDO 0163-1829 10.1103/PhysRevB.55.R680Hannon, J.P., Trammell, G.T., Blume, M., Gibbs, D., (1988) Phys. Rev. Lett., 61, p. 1245. , PRLTAO 0031-9007 10.1103/PhysRevLett.61.1245Blume, M., Gibbs, D., (1988) Phys. Rev. B, 37, p. 1779. , PRBMDO 0163-1829 10.1103/PhysRevB.37.1779Kubo, K., Hotta, T., (2006) J. Phys. Soc. Jpn., 75, p. 083702. , JUPSAU 0031-9015 10.1143/JPSJ.75.083702Tsuchida, T., Wallace, W.E., (1965) J. Chem. Phys., 43, p. 3811. , JCPSA6 0021-9606 10.1063/1.169656
    • …
    corecore