46 research outputs found
Impact of traffic management on black carbon emissions: a microsimulation study
This paper investigates the effectiveness of traffic management tools, includ- ing traffic signal control and en-route navigation provided by variable message signs (VMS), in reducing traffic congestion and associated emissions of CO2, NOx, and black carbon. The latter is among the most significant contributors of climate change, and is associated with many serious health problems. This study combines traffic microsimulation (S-Paramics) with emission modeling (AIRE) to simulate and predict the impacts of different traffic management measures on a number traffic and environmental Key Performance Indicators (KPIs) assessed at different spatial levels. Simulation results for a real road network located in West Glasgow suggest that these traffic management tools can bring a reduction in travel delay and BC emission respectively by up to 6 % and 3 % network wide. The improvement at local levels such as junctions or corridors can be more significant. However, our results also show that the potential benefits of such interventions are strongly dependent on a number of factors, including dynamic demand profile, VMS compliance rate, and fleet composition. Extensive discussion based on the simulation results as well as managerial insights are provided to support traffic network operation and control with environmental goals. The study described by this paper was conducted under the support of the FP7-funded CARBOTRAF project
Environmental impact of combined ITS traffic management strategies
Transport was responsible for 20% of the total greenhouse gas emissions in Europe during 2011 (European Environmental Agency 2013) with road transport being the key contributor. To tackle this, targets have been established in Europe and worldwide to curb transport emissions. This poses a significant challenge on Local Government and transport operators who need to identify a set of effective measures to reduce the environmental impact of road transport and at the same time keep the traffic smooth. Of the road transport pollutants, this paper considers NOx, CO2 and black carbon (BC). A particular focus is put on black carbon, which is formed through incomplete combustion of carboneous materials, as it has a significant impact on the Earth’s climate system. It absorbs solar radiation, influences cloud processes, and alters the melting of snow and ice cover (Bond et al. 2013). BC also causes serious health concerns: black carbon is associated with asthma and other respiratory problems, heart attacks and lung cancer (Sharma 2010; United States Environmental Protection Agency 2012). Since BC emissions are mainly produced during the decelerating and accelerating phases (Zhang et al. 2009), ITS actions able to reduce stop&go phases have the potential to reduce BC emissions. This paper investigates the effectiveness of combined ITS actions in urban context in reducing CO2 and BC emissions and improving traffic conditions
CARBOTRAF: A decision Support system for reducing pollutant emissions by adaptive traffic management
Traffic congestion with frequent “stop & go” situations causes substantial pollutant emissions. Black carbon (BC) is a good indicator of combustion-related air pollution and results in negative health effects. Both BC and CO2 emissions are also known to contribute significantly to global warming. Current traffic control systems are designed to improve traffic flow and reduce congestion. The CARBOTRAF system combines real-time monitoring of traffic and air pollution with simulation models for emission and local air quality prediction in order to deliver on-line recommendations for alternative adaptive traffic management. The aim of introducing a CARBOTRAF system is to reduce BC and CO2 emissions and improve air quality by optimizing the traffic flows. The system is implemented and evaluated in two pilot cities, Graz and Glasgow. Model simulations link traffic states to emission and air quality levels. A chain of models combines micro-scale traffic simulations, traffic volumes, emission models and air quality simulations. This process is completed for several ITS scenarios and a range of traffic boundary conditions. The real-time DSS system uses all these model simulations to select optimal traffic and air quality scenarios. Traffic and BC concentrations are simultaneously monitored. In this paper the effects of ITS measures on air quality are analysed with a focus on BC
Air quality impact of a decision support system for reducing pollutant emissions: CARBOTRAF
Traffic congestion with frequent “stop & go” situations causes substantial pollutant emissions. Black carbon (BC) is a good indicator of combustion-related air pollution and results in negative health effects. Both BC and CO2 emissions are also known to contribute significantly to global warming. Current traffic control systems are designed to improve traffic flow and reduce congestion. The CARBOTRAF system combines real-time monitoring of traffic and air pollution with simulation models for emission and local air quality prediction in order to deliver on-line recommendations for alternative adaptive traffic management. The aim of introducing a CARBOTRAF system is to reduce BC and CO2 emissions and improve air quality by optimizing the traffic flows. The system is implemented and evaluated in two pilot cities, Graz and Glasgow. Model simulations link traffic states to emission and air quality levels. A chain of models combines micro-scale traffic simulations, traffic volumes, emission models and air quality simulations. This process is completed for several ITS scenarios and a range of traffic boundary conditions. The real-time DSS system uses these off-line model simulations to select optimal traffic and air quality scenarios. Traffic and BC concentrations are simultaneously monitored. In this paper the effects of ITS measures on air quality are analysed with a focus on BC
Influence of socioeconomic factors on pregnancy outcome in women with structural heart disease
OBJECTIVE: Cardiac disease is the leading cause of indirect maternal mortality. The aim of this study was to analyse to what extent socioeconomic factors influence the outcome of pregnancy in women with heart disease. METHODS: The Registry of Pregnancy and Cardiac disease is a global prospective registry. For this analysis, countries that enrolled ≥10 patients were included. A combined cardiac endpoint included maternal cardiac death, arrhythmia requiring treatment, heart failure, thromboembolic event, aortic dissection, endocarditis, acute coronary syndrome, hospitalisation for cardiac reason or intervention. Associations between patient characteristics, country characteristics (income inequality expressed as Gini coefficient, health expenditure, schooling, gross domestic product, birth rate and hospital beds) and cardiac endpoints were checked in a three-level model (patient-centre-country). RESULTS: A total of 30 countries enrolled 2924 patients from 89 centres. At least one endpoint occurred in 645 women (22.1%). Maternal age, New York Heart Association classification and modified WHO risk classification were associated with the combined endpoint and explained 37% of variance in outcome. Gini coefficient and country-specific birth rate explained an additional 4%. There were large differences between the individual countries, but the need for multilevel modelling to account for these differences disappeared after adjustment for patient characteristics, Gini and country-specific birth rate. CONCLUSION: While there are definite interregional differences in pregnancy outcome in women with cardiac disease, these differences seem to be mainly driven by individual patient characteristics. Adjustment for country characteristics refined the results to a limited extent, but maternal condition seems to be the main determinant of outcome
The presentation of an integrated microsimulation modeling framework to measure and predict emissions and dynamic exposure
peer reviewedIn this paper, an integrated modelling methodology for
the assessment of population exposure to air pollution, involving
all compartments of the DPSIR-concept, is illustrated
by an application in The Netherlands. The application
demonstrates the advantages of an activity-based approach
by presenting three kinds of applications: the calculation
of vehicle emissions, the simulation of pollutant
concentration patterns and the assessment of the population
exposure to air population. Understanding exposure
variations among activities and subpopulations can be very
useful for scientific and policy purposes: it can provide information
on locations or population groups most at risk,
or can indicate where and when the largest exposure values
occur