23 research outputs found

    Ergebnisse aus 10 Jahren Humusmonitoring auf AckerflÀchen in Nordrhein-Westfalen

    Get PDF
    Seit 2009 wird vom Landesamt fĂŒr Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen (LANUV NRW) in Zusammenarbeit mit dem Geologischen Dienst NRW, der Landwirtschaftskammer NRW sowie der UniversitĂ€t Bonn ein Humusmonitoringprogramm in Nordrhein-Westfalen durchgefĂŒhrt. Ziele sind die Bestimmung der Gehalte und VorrĂ€te an organischem Kohlenstoff (Corg) von Ackerböden in Nordrhein-Westfalen sowie die AbschĂ€tzung von VerĂ€nderungen der Corg-Gehalte und VorrĂ€te. ZusĂ€tzlich sollen die Einflussfaktoren, wie z.B. Klimawandel und die landwirtschaftliche Nutzung, auf Gehalte und VorrĂ€te ermittelt werden. Die Ergebnisse sollen auch eine wissen-schaftlich fundierte Basis schaffen, um die Landwirte bei allen Fragen der Humuspflege optimal zu beraten. Die Corg-Gehalte der Beprobung von 197 FlĂ€chen in 2009 liegen in einer Spanne von 0,7 bis 3,4 % mit deutlichen Unterschieden zwischen den untersuchten naturrĂ€umlichen Regionen. Rund 75 % der FlĂ€chen weisen Gehalte zwischen 1 und 2 % Corg auf. Die bisherigen Ergebnisse im Intensivmonitoring (2009 – 2018) von 45 ausgewĂ€hlten AckerflĂ€chen zeigen bisher keine NRW-weit gerichtete Entwicklung bei den Corg-Gehalten. Es sind jedoch regionale Trends zu beobachten. Multivariate Auswertungen haben gezeigt, dass insgesamt die organische DĂŒngung, der Corg-Gehalt zu Beginn der Messreihe sowie die Temperaturzunahme den grĂ¶ĂŸten Einfluss auf die VerĂ€nderung der Corg-Gehalte aller 45 FlĂ€chen haben. Hervorzuheben sind dabei das Niederrheinische Tiefland und die Rheinische Bucht, in denen in den letzten zehn Jahren im Oberboden eine signifikante Zunahme der Corg-Gehalte zu beobachten ist und dies vermutlich vor allem auf die Zufuhr organischer DĂŒnger zurĂŒckzufĂŒhren ist

    An incubation study on the stability and biological effects of pyrogenic and hydrothermal biochar in two soils

    No full text
    The success and feasibility of CO2-sequestration through incorporation of biochar into soils depends strongly on the long-term biochar stability and on the improvements of physical and microbial soil properties. In this study, the stability of two maize-derived biochars (from pyrolysis and hydrothermal carbonization) and of a compost-biochar mixture and their effects on microbial biomass and enzyme activity were determined in two soils during a 57-day incubation. Soil samples amended with biochar increased soil organic carbon (SOC) content by 20 or 40%. Samples amended with hydrothermal biochar showed the largest respiration rates and the largest increase in microbial and enzymatic activity compared with the untreated controls. Carbon and 13C mass balances showed that between 13 and 16% of the added hydrochar was mineralized within 8 weeks. In the arable soil, hydrochar additions greatly stimulated the degradation of SOC, thus inducing positive priming effects. The mineralization of pyrogenic biochar (pyrochar and a pyrochar-compost mixture) was significantly less (1.4–3%) and comparable to the SOC mineralization in the control soils

    Temperature response of soil respiration largely unaltered with experimental warming

    No full text
    © 2016, National Academy of Sciences. All rights reserved. The respiratory release of carbon dioxide (CO2) from soil is a major yet poorly understood flux in the global carbon cycle. Climatic warming is hypothesized to increase rates of soil respiration, potentially fueling further increases in global temperatures. However, despite considerable scientific attention in recent decades, the overall response of soil respiration to anticipated climatic warming remains unclear. We synthesize the largest global dataset to date of soil respiration, moisture, and temperature measurements, totaling \u3e 3,800 observations representing 27 temperature manipulation studies, spanning nine biomes and over 2 decades of warming. Our analysis reveals no significant differences in the temperature sensitivity of soil respiration between control and warmed plots in all biomes, with the exception of deserts and boreal forests. Thus, our data provide limited evidence of acclimation of soil respiration to experimental warming in several major biome types, contrary to the results from multiple single-site studies. Moreover, across all nondesert biomes, respiration rates with and without experimental warming follow a Gaussian response, increasing with soil temperature up to a threshold of ∌25 °C, above which respiration rates decrease with further increases in temperature. This consistent decrease in temperature sensitivity at higher temperatures demonstrates that rising global temperatures may result in regionally variable responses in soil respiration, with colder climates being considerably more responsive to increased ambient temperatures compared with warmer regions. Our analysis adds a unique cross-biome perspective on the temperature response of soil respiration, information critical to improving our mechanistic understanding of how soil carbon dynamics change with climatic warming

    Temperature response of soil respiration largely unaltered with experimental warming

    No full text
    The respiratory release of carbon dioxide (CO2) from soil is a major yet poorly understood flux in the global carbon cycle. Climatic warming is hypothesized to increase rates of soil respiration, potentially fueling further increases in global temperatures. However, despite considerable scientific attention in recent decades, the overall response of soil respiration to anticipated climatic warming remains unclear. We synthesize the largest global dataset to date of soil respiration, moisture, and temperature measurements, totaling >3,800 observations representing 27 temperature manipulation studies, spanning nine biomes and over 2 decades of warming. Our analysis reveals no significant differences in the temperature sensitivity of soil respiration between control and warmed plots in all biomes, with the exception of deserts and boreal forests. Thus, our data provide limited evidence of acclimation of soil respiration to experimental warming in several major biome types, contrary to the results from multiple single-site studies. Moreover, across all nondesert biomes, respiration rates with and without experimental warming follow a Gaussian response, increasing with soil temperature up to a threshold of ∌25 °C, above which respiration rates decrease with further increases in temperature. This consistent decrease in temperature sensitivity at higher temperatures demonstrates that rising global temperatures may result in regionally variable responses in soil respiration, with colder climates being considerably more responsive to increased ambient temperatures compared with warmer regions. Our analysis adds a unique cross-biome perspective on the temperature response of soil respiration, information critical to improving our mechanistic understanding of how soil carbon dynamics change with climatic warming
    corecore