36 research outputs found
Evaluation of Indirect Fluorescent Antibody Assays Compared to Rapid Influenza Diagnostic Tests for the Detection of Pandemic Influenza A (H1N1) pdm09
Performance of indirect fluorescent antibody (IFA) assays and rapid influenza diagnostic tests (RIDT) during the 2009 H1N1 pandemic was evaluated, along with the relative effects of age and illness severity on test accuracy. Clinicians and laboratories submitted specimens on patients with respiratory illness to public health from April to mid October 2009 for polymerase chain reaction (PCR) testing as part of pandemic H1N1 surveillance efforts in Orange County, CA; IFA and RIDT were performed in clinical settings. Sensitivity and specificity for detection of the 2009 pandemic H1N1 strain, now officially named influenza A(H1N1)pdm09, were calculated for 638 specimens. Overall, approximately 30% of IFA tests and RIDTs tested by PCR were falsely negative (sensitivity 71% and 69%, respectively). Sensitivity of RIDT ranged from 45% to 84% depending on severity and age of patients. In hospitalized children, sensitivity of IFA (75%) was similar to RIDT (84%). Specificity of tests performed on hospitalized children was 94% for IFA and 80% for RIDT. Overall sensitivity of RIDT in this study was comparable to previously published studies on pandemic H1N1 influenza and sensitivity of IFA was similar to what has been reported in children for seasonal influenza. Both diagnostic tests produced a high number of false negatives and should not be used to rule out influenza infection
Association of blood lactate with type 2 diabetes: the Atherosclerosis Risk in Communities Carotid MRI Study
Background Accumulating evidence implicates insufficient oxidative capacity in the development of type 2 diabetes. This notion has not been well tested in large, population-based studies
The Microbicidal Activity of Gaseous Propylene Oxide and Its Application to Powdered or Flaked Foods
Brief Report: External Beam Radiation Therapy for the Treatment of Human Pluripotent Stem Cell-Derived Teratomas.
Human pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced PSCs (hiPSCs), have great potential as an unlimited donor source for cell-based therapeutics. The risk of teratoma formation from residual undifferentiated cells, however, remains a critical barrier to the clinical application of these cells. Herein, we describe external beam radiation therapy (EBRT) as an attractive option for the treatment of this iatrogenic growth. We present evidence that EBRT is effective in arresting growth of hESC-derived teratomas in vivo at day 28 post-implantation by using a microCT irradiator capable of targeted treatment in small animals. Within several days of irradiation, teratomas derived from injection of undifferentiated hESCs and hiPSCs demonstrated complete growth arrest lasting several months. In addition, EBRT reduced reseeding potential of teratoma cells during serial transplantation experiments, requiring irradiated teratomas to be seeded at 1 × 103 higher doses to form new teratomas. We demonstrate that irradiation induces teratoma cell apoptosis, senescence, and growth arrest, similar to established radiobiology mechanisms. Taken together, these results provide proof of concept for the use of EBRT in the treatment of existing teratomas and highlight a strategy to increase the safety of stem cell-based therapies. Stem Cells 2017;35:1994-2000