12,026 research outputs found

    The effect of NOM characteristics and membrane type on microfiltration performance

    Get PDF
    Efforts to understand and predict the role of different organic fractions in the fouling of low-pressure membranes are presented. Preliminary experiments with an experimental apparatus that incorporates automatic backwashing and filtration over several days has shown that microfiltration of the hydrophilic fractions leads to rapid flux decline and the formation of a cake or gel layer, while the hydrophobic fractions show a steady flux decline and no obvious formation of a gel or cake layer. The addition of calcium to the weakly hydrophobic acid (WHA) fraction led to the formation of a gel layer from associations between components of the WHA. The dominant foulants were found to be the neutral and charged hydrophilic compounds, with hydrophobic and small pore size membranes being the most readily fouled. The findings suggest that surface analyses such as FTIR will preferentially identify hydrophilic compounds as the main foulants, as these components form a gel layer on the surface while the hydrophobic compounds adsorb within the membrane pores. Furthermore, coagulation pre-treatment is also likely to reduce fouling by reducing pore constriction rather than the formation of a gel layer, as coagulants remove the hydrophobic compounds to a large extent and very little of the hydrophilic neutral components

    Data compilation and evaluation of space shielding problems. Radiation hazards in space, volume III

    Get PDF
    Radiation hazards of interplanetary space and related shielding problem

    Computer programs for shielding problems in manned space vehicles

    Get PDF
    Computer programs for shielding problems in manned space vehicles - proton penetration code

    Possible evidence of a spontaneous spin-polarization in mesoscopic 2D electron systems

    Full text link
    We have experimentally studied the non-equilibrium transport in low-density clean 2D electron systems at mesoscopic length scales. At zero magnetic field (B), a double-peak structure in the non-linear conductance was observed close to the Fermi energy in the localized regime. From the behavior of these peaks at non-zero B, we could associate them to the opposite spin states of the system, indicating a spontaneous spin polarization at B = 0. Detailed temperature and disorder dependence of the structure shows that such a splitting is a ground state property of the low-density 2D systems.Comment: 7 pages, 5 figure

    Evolution of the bilayer nu = 1 quantum Hall state under charge imbalance

    Full text link
    We use high-mobility bilayer hole systems with negligible tunneling to examine how the bilayer nu = 1 quantum Hall state evolves as charge is transferred from one layer to the other at constant total density. We map bilayer nu = 1 state stability versus imbalance for five total densities spanning the range from strongly interlayer coherent to incoherent. We observe competition between single-layer correlations and interlayer coherence. Most significantly, we find that bilayer systems that are incoherent at balance can develop spontaneous interlayer coherence with imbalance, in agreement with recent theoretical predictions.Comment: 4 pages, 4 figure

    Nuclear spin coherence in a quantum wire

    Full text link
    We have observed millisecond-long coherent evolution of nuclear spins in a quantum wire at 1.2 K. Local, all-electrical manipulation of nuclear spins is achieved by dynamic nuclear polarization in the breakdown regime of the Integer Quantum Hall Effect combined with pulsed Nuclear Magnetic Resonance. The excitation thresholds for the breakdown are significantly smaller than what would be expected for our sample and the direction of the nuclear polarization can be controlled by the voltage bias. As a four-level spin system, the device is equivalent to two qubits.Comment: 5 pages, 5 figure

    Kondo Effect in a Quantum Antidot

    Full text link
    We report Kondo-like behaviour in a quantum antidot (a submicron depleted region in a two-dimensional electron gas) in the quantum-Hall regime. When both spin branches of the lowest Landau level encircle the antidot in a magnetic field (1\sim 1 T), extra resonances occur between extended edge states via antidot bound states when tunnelling is Coulomb blockaded. These resonances appear only in alternating Coulomb-blockaded regions, and become suppressed when the temperature or source-drain bias is raised. Although the exact mechanism is unknown, we believe that Kondo-like correlated tunnelling arises from skyrmion-type edge reconstruction. This observation demonstrates the generality of the Kondo phenomenon.Comment: 9 pages, 3 figures (Fig.3 in colour), to appear in Phys. Rev. Let

    Surface acoustic wave-induced electroluminescence intensity oscillation in planar light-emitting devices

    Full text link
    Electroluminescence emission from surface acoustic wave-driven light-emitting diodes (SAWLEDs) is studied by means of time-resolved techniques. We show that the intensity of the SAW-induced electroluminescence is modulated at the SAW frequency (~1 GHz), demonstrating electron injection into the p-type region synchronous with the SAW wavefronts.Comment: 4 pages, 3 figure

    Probing spin-charge separation in a Tomonaga-Luttinger liquid

    Get PDF
    In a one-dimensional (1D) system of interacting electrons, excitations of spin and charge travel at different speeds, according to the theory of a Tomonaga-Luttinger Liquid (TLL) at low energies. However, the clear observation of this spin-charge separation is an ongoing challenge experimentally. We have fabricated an electrostatically-gated 1D system in which we observe spin-charge separation and also the predicted power-law suppression of tunnelling into the 1D system. The spin-charge separation persists even beyond the low-energy regime where the TLL approximation should hold. TLL effects should therefore also be important in similar, but shorter, electrostatically gated wires, where interaction effects are being studied extensively worldwide.Comment: 11 pages, 4 PDF figures, uses scicite.sty, Science.bs

    Effects of Zeeman spin splitting on the modular symmetry in the quantum Hall effect

    Full text link
    Magnetic-field-induced phase transitions in the integer quantum Hall effect are studied under the formation of paired Landau bands arising from Zeeman spin splitting. By investigating features of modular symmetry, we showed that modifications to the particle-hole transformation should be considered under the coupling between the paired Landau bands. Our study indicates that such a transformation should be modified either when the Zeeman gap is much smaller than the cyclotron gap, or when these two gaps are comparable.Comment: 8 pages, 4 figure
    corecore