12,026 research outputs found
The effect of NOM characteristics and membrane type on microfiltration performance
Efforts to understand and predict the role of different organic fractions in the fouling of low-pressure membranes are presented. Preliminary experiments with an experimental apparatus that incorporates automatic backwashing and filtration over several days has shown that microfiltration of the hydrophilic fractions leads to rapid flux decline and the formation of a cake or gel layer, while the hydrophobic fractions show a steady flux decline and no obvious formation of a gel or cake layer. The addition of calcium to the weakly hydrophobic acid (WHA) fraction led to the formation of a gel layer from associations between components of the WHA. The dominant foulants were found to be the neutral and charged hydrophilic compounds, with hydrophobic and small pore size membranes being the most readily fouled. The findings suggest that surface analyses such as FTIR will preferentially identify hydrophilic compounds as the main foulants, as these components form a gel layer on the surface while the hydrophobic compounds adsorb within the membrane pores. Furthermore, coagulation pre-treatment is also likely to reduce fouling by reducing pore constriction rather than the formation of a gel layer, as coagulants remove the hydrophobic compounds to a large extent and very little of the hydrophilic neutral components
Data compilation and evaluation of space shielding problems. Radiation hazards in space, volume III
Radiation hazards of interplanetary space and related shielding problem
Computer programs for shielding problems in manned space vehicles
Computer programs for shielding problems in manned space vehicles - proton penetration code
Possible evidence of a spontaneous spin-polarization in mesoscopic 2D electron systems
We have experimentally studied the non-equilibrium transport in low-density
clean 2D electron systems at mesoscopic length scales. At zero magnetic field
(B), a double-peak structure in the non-linear conductance was observed close
to the Fermi energy in the localized regime. From the behavior of these peaks
at non-zero B, we could associate them to the opposite spin states of the
system, indicating a spontaneous spin polarization at B = 0. Detailed
temperature and disorder dependence of the structure shows that such a
splitting is a ground state property of the low-density 2D systems.Comment: 7 pages, 5 figure
Evolution of the bilayer nu = 1 quantum Hall state under charge imbalance
We use high-mobility bilayer hole systems with negligible tunneling to
examine how the bilayer nu = 1 quantum Hall state evolves as charge is
transferred from one layer to the other at constant total density. We map
bilayer nu = 1 state stability versus imbalance for five total densities
spanning the range from strongly interlayer coherent to incoherent. We observe
competition between single-layer correlations and interlayer coherence. Most
significantly, we find that bilayer systems that are incoherent at balance can
develop spontaneous interlayer coherence with imbalance, in agreement with
recent theoretical predictions.Comment: 4 pages, 4 figure
Nuclear spin coherence in a quantum wire
We have observed millisecond-long coherent evolution of nuclear spins in a
quantum wire at 1.2 K. Local, all-electrical manipulation of nuclear spins is
achieved by dynamic nuclear polarization in the breakdown regime of the Integer
Quantum Hall Effect combined with pulsed Nuclear Magnetic Resonance. The
excitation thresholds for the breakdown are significantly smaller than what
would be expected for our sample and the direction of the nuclear polarization
can be controlled by the voltage bias. As a four-level spin system, the device
is equivalent to two qubits.Comment: 5 pages, 5 figure
Kondo Effect in a Quantum Antidot
We report Kondo-like behaviour in a quantum antidot (a submicron depleted
region in a two-dimensional electron gas) in the quantum-Hall regime. When both
spin branches of the lowest Landau level encircle the antidot in a magnetic
field ( T), extra resonances occur between extended edge states via
antidot bound states when tunnelling is Coulomb blockaded. These resonances
appear only in alternating Coulomb-blockaded regions, and become suppressed
when the temperature or source-drain bias is raised. Although the exact
mechanism is unknown, we believe that Kondo-like correlated tunnelling arises
from skyrmion-type edge reconstruction. This observation demonstrates the
generality of the Kondo phenomenon.Comment: 9 pages, 3 figures (Fig.3 in colour), to appear in Phys. Rev. Let
Surface acoustic wave-induced electroluminescence intensity oscillation in planar light-emitting devices
Electroluminescence emission from surface acoustic wave-driven light-emitting
diodes (SAWLEDs) is studied by means of time-resolved techniques. We show that
the intensity of the SAW-induced electroluminescence is modulated at the SAW
frequency (~1 GHz), demonstrating electron injection into the p-type region
synchronous with the SAW wavefronts.Comment: 4 pages, 3 figure
Probing spin-charge separation in a Tomonaga-Luttinger liquid
In a one-dimensional (1D) system of interacting electrons, excitations of
spin and charge travel at different speeds, according to the theory of a
Tomonaga-Luttinger Liquid (TLL) at low energies. However, the clear observation
of this spin-charge separation is an ongoing challenge experimentally. We have
fabricated an electrostatically-gated 1D system in which we observe spin-charge
separation and also the predicted power-law suppression of tunnelling into the
1D system. The spin-charge separation persists even beyond the low-energy
regime where the TLL approximation should hold. TLL effects should therefore
also be important in similar, but shorter, electrostatically gated wires, where
interaction effects are being studied extensively worldwide.Comment: 11 pages, 4 PDF figures, uses scicite.sty, Science.bs
Effects of Zeeman spin splitting on the modular symmetry in the quantum Hall effect
Magnetic-field-induced phase transitions in the integer quantum Hall effect
are studied under the formation of paired Landau bands arising from Zeeman spin
splitting. By investigating features of modular symmetry, we showed that
modifications to the particle-hole transformation should be considered under
the coupling between the paired Landau bands. Our study indicates that such a
transformation should be modified either when the Zeeman gap is much smaller
than the cyclotron gap, or when these two gaps are comparable.Comment: 8 pages, 4 figure
- …