46,429 research outputs found

    Purified human BRCA2 stimulates RAD51-mediated recombination.

    Get PDF
    Mutation of the breast cancer susceptibility gene, BRCA2, leads to breast and ovarian cancers. Mechanistic insight into the functions of human BRCA2 has been limited by the difficulty of isolating this large protein (3,418 amino acids). Here we report the purification of full-length BRCA2 and show that it both binds RAD51 and potentiates recombinational DNA repair by promoting assembly of RAD51 onto single-stranded DNA (ssDNA). BRCA2 acts by targeting RAD51 to ssDNA over double-stranded DNA, enabling RAD51 to displace replication protein-A (RPA) from ssDNA and stabilizing RAD51-ssDNA filaments by blocking ATP hydrolysis. BRCA2 does not anneal ssDNA complexed with RPA, implying it does not directly function in repair processes that involve ssDNA annealing. Our findings show that BRCA2 is a key mediator of homologous recombination, and they provide a molecular basis for understanding how this DNA repair process is disrupted by BRCA2 mutations, which lead to chromosomal instability and cancer

    Phonon-induced quadrupolar ordering of the magnetic superconductor TmNi2_2B2_2C

    Get PDF
    We present synchrotron x-ray diffraction studies revealing that the lattice of thulium borocarbide is distorted below T_Q = 13.5 K at zero field. T_Q increases and the amplitude of the displacements is drastically enhanced, by a factor of 10 at 60 kOe, when a magnetic field is applied along [100]. The distortion occurs at the same wave vector as the antiferromagnetic ordering induced by the a-axis field. A model is presented that accounts for the properties of the quadrupolar phase and explains the peculiar behavior of the antiferromagnetic ordering previously observed in this compound.Comment: submitted to PR

    Ammonia emissions from deciduous forest after leaf fall

    Get PDF
    The understanding of biochemical feedback mechanisms in the climate system is lacking knowledge in relation to bi-directional ammonia (NH3) exchange between natural ecosystems and the atmosphere. We therefore study the atmospheric NH3 fluxes during a 25-day period during autumn 2010 (21 October to 15 November) for the Danish beech forest Lille Bøgeskov to address the hypothesis that NH3 emissions occur from deciduous forests in relation to leaf fall. This is accomplished by using observations of vegetation status, NH3 fluxes and model calculations. Vegetation status was observed using plant area index (PAI) and leaf area index (LAI). NH3 fluxes were measured using the relaxed eddy accumulation (REA) method. The REA-based NH3 concentrations were compared to NH3 denuder measurements. Model calculations of the atmospheric NH3 concentration were obtained with the Danish Ammonia MOdelling System (DAMOS). The relative contribution from the forest components to the atmospheric NH3 flux was assessed using a simple two-layer bi-directional canopy compensation point model. A total of 57.7% of the fluxes measured showed emission and 19.5% showed deposition. A clear tendency of the flux going from deposition of −0.25 ± 0.30 μg NH3-N m−2 s−1 to emission of up to 0.67 ± 0.28 μg NH3-N m−2 s−1 throughout the measurement period was found. In the leaf fall period (23 October to 8 November), an increase in the atmospheric NH3 concentrations was related to the increasing forest NH3 flux. Following leaf fall, the magnitude and temporal structure of the measured NH3 emission fluxes could be adequately reproduced with the bi-directional resistance model; it suggested the forest ground layer (soil and litter) to be the main contributing component to the NH3 emissions. The modelled concentration from DAMOS fits well the measured concentrations before leaf fall, but during and after leaf fall, the modelled concentrations are too low. The results indicate that the missing contribution to atmospheric NH3 concentration from vegetative surfaces related to leaf fall are of a relatively large magnitude. We therefore conclude that emissions from deciduous forests are important to include in model calculations of atmospheric NH3 for forest ecosystems. Finally, diurnal variations in the measured NH3 concentrations were related to meteorological conditions, forest phenology and the spatial distribution of local anthropogenic NH3 sources. This suggests that an accurate description of ammonia fluxes over forest ecosystems requires a dynamic description of atmospheric and vegetation processes

    1/z-renormalization of the mean-field behavior of the dipole-coupled singlet-singlet system HoF_3

    Full text link
    The two main characteristics of the holmium ions in HoF_3 are that their local electronic properties are dominated by two singlet states lying well below the remaining 4f-levels, and that the classical dipole-coupling is an order of magnitude larger than any other two-ion interactions between the Ho-moments. This combination makes the system particularly suitable for testing refinements of the mean-field theory. There are four Ho-ions per unit cell and the hyperfine coupled electronic and nuclear moments on the Ho-ions order in a ferrimagnetic structure at T_C=0.53 K. The corrections to the mean-field behavior of holmium triflouride, both in the paramagnetic and ferrimagnetic phase, have been calculated to first order in the high-density 1/z-expansion. The effective medium theory, which includes the effects of the single-site fluctuations, leads to a substantially improved description of the magnetic properties of HoF_3, in comparison with that based on the mean-field approximation.Comment: 26pp, plain-TeX, JJ

    Tip Splittings and Phase Transitions in the Dielectric Breakdown Model: Mapping to the DLA Model

    Full text link
    We show that the fractal growth described by the dielectric breakdown model exhibits a phase transition in the multifractal spectrum of the growth measure. The transition takes place because the tip-splitting of branches forms a fixed angle. This angle is eta dependent but it can be rescaled onto an ``effectively'' universal angle of the DLA branching process. We derive an analytic rescaling relation which is in agreement with numerical simulations. The dimension of the clusters decreases linearly with the angle and the growth becomes non-fractal at an angle close to 74 degrees (which corresponds to eta= 4.0 +- 0.3).Comment: 4 pages, REVTex, 3 figure

    Advanced combined iodine dispenser and detector

    Get PDF
    A total weight of 1.23 kg (2.7 lb), a total volume of 1213 cu m (74 cu in), and an average power consumption of 5.5W was achieved in the advanced combined iodine dispenser/detector by integrating the detector with the iodine source, arranging all iodinator components within a compact package and lowering the parasitic power to the detector and electronics circuits. These achievements surpassed the design goals of 1.36 kg (3.0 lb), 1671 cu m (102 cu in) and 8W. The reliability and maintainability were improved by reducing the detector lamp power, using an interchangeable lamp concept, making the electronic circuit boards easily accessible, providing redundant water seals and improving the accessibility to the iodine accumulator for refilling. The system was designed to iodinate (to 5 ppm iodine) the fuel cell water generated during 27 seven-day orbiter missions (equivalent to 18,500 kg (40,700 lb) of water) before the unit must be recharged with iodine crystals

    First-principles study of the energetics of charge and cation mixing in U_{1-x} Ce_x O_2

    Full text link
    The formalism of electronic density-functional-theory, with Hubbard-U corrections (DFT+U), is employed in a computational study of the energetics of U_{1-x} Ce_x O_2 mixtures. The computational approach makes use of a procedure which facilitates convergence of the calculations to multiple self-consistent DFT+U solutions for a given cation arrangement, corresponding to different charge states for the U and Ce ions in several prototypical cation arrangements. Results indicate a significant dependence of the structural and energetic properties on the nature of both charge and cation ordering. With the effective Hubbard-U parameters that reproduce well the measured oxidation-reduction energies for urania and ceria, we find that charge transfer between U(IV) and Ce(IV) ions, leading to the formation of U(V) and Ce(III), gives rise to an increase in the mixing energy in the range of 4-14 kJ/mol of formula unit, depending on the nature of the cation ordering. The results suggest that although charge transfer between uranium and cerium ions is disfavored energetically, it is likely to be entropically stabilized at the high temperatures relevant to the processing and service of urania-based solid solutions.Comment: 8 pages, 6 figure
    • …
    corecore