10,459 research outputs found
Linear analysis of a force reflective teleoperator
Complex force reflective teleoperation systems are often very difficult to analyze due to the large number of components and control loops involved. One mode of a force reflective teleoperator is described. An analysis of the performance of the system based on a linear analysis of the general full order model is presented. Reduced order models are derived and correlated with the full order models. Basic effects of force feedback and position feedback are examined and the effects of time delays between the master and slave are studied. The results show that with symmetrical position-position control of teleoperators, a basic trade off must be made between the intersystem stiffness of the teleoperator, and the impedance felt by the operator in free space
Rate theory for correlated processes: Double-jumps in adatom diffusion
We study the rate of activated motion over multiple barriers, in particular
the correlated double-jump of an adatom diffusing on a missing-row
reconstructed Platinum (110) surface. We develop a Transition Path Theory,
showing that the activation energy is given by the minimum-energy trajectory
which succeeds in the double-jump. We explicitly calculate this trajectory
within an effective-medium molecular dynamics simulation. A cusp in the
acceptance region leads to a sqrt{T} prefactor for the activated rate of
double-jumps. Theory and numerical results agree
Infrared Optical Properties of Ferropericlase (Mg1-xFexO): Experiment and Theory
The temperature dependence of the reflectance spectra of magnesium oxide
(MgO) and ferropericlase (Mg1-xFexO, for x=0.06 and x=0.27) have been measured
over a wide frequency range (~50 to 32000 cm-1) at 295 and 6 K. The complex
dielectric function has been determined from a Kramers-Kronig analysis of the
reflectance. The spectra of the doped materials resembles pure MgO in the
infrared region, but with much broader resonances. We use a shell model to
calculate the dielectric function of ferropericlase, including both anharmonic
phonon-phonon interactions and disorder scattering. These data are relevant to
understanding the heat conductivity of ferropericlase in the earth's lower
mantle.Comment: 17 pages, 6 figure
A real-space grid implementation of the Projector Augmented Wave method
A grid-based real-space implementation of the Projector Augmented Wave (PAW)
method of P. E. Blochl [Phys. Rev. B 50, 17953 (1994)] for Density Functional
Theory (DFT) calculations is presented. The use of uniform 3D real-space grids
for representing wave functions, densities and potentials allows for flexible
boundary conditions, efficient multigrid algorithms for solving Poisson and
Kohn-Sham equations, and efficient parallelization using simple real-space
domain-decomposition. We use the PAW method to perform all-electron
calculations in the frozen core approximation, with smooth valence wave
functions that can be represented on relatively coarse grids. We demonstrate
the accuracy of the method by calculating the atomization energies of twenty
small molecules, and the bulk modulus and lattice constants of bulk aluminum.
We show that the approach in terms of computational efficiency is comparable to
standard plane-wave methods, but the memory requirements are higher.Comment: 13 pages, 3 figures, accepted for publication in Physical Review
Sound velocity and absorption measurements under high pressure using picosecond ultrasonics in diamond anvil cell. Application to the stability study of AlPdMn
We report an innovative high pressure method combining the diamond anvil cell
device with the technique of picosecond ultrasonics. Such an approach allows to
accurately measure sound velocity and attenuation of solids and liquids under
pressure of tens of GPa, overcoming all the drawbacks of traditional
techniques. The power of this new experimental technique is demonstrated in
studies of lattice dynamics, stability domain and relaxation process in a
metallic sample, a perfect single-grain AlPdMn quasicrystal, and rare gas, neon
and argon. Application to the study of defect-induced lattice stability in
AlPdMn up to 30 GPa is proposed. The present work has potential for application
in areas ranging from fundamental problems in physics of solid and liquid
state, which in turn could be beneficial for various other scientific fields as
Earth and planetary science or material research
Nd-142/Nd-144 in bulk planetary reservoirs, the problem of incomplete mixing of interstellar components and significance of very high precision Nd-145/Nd-144 measurements
Apart from the challenge of very high precision Nd-142/Nd-144 ratio measurement, accurate applications of the coupled Sm-(146,147)-Nd-(142,143) systematics in planetary differentiation studies require very precise knowledge of the present-day (post-Sm-146 decay) Nd-142/Nd-144 ratios of bulk planetary objects (BP). The coupled systematics yield model ages for the time of formation of Sm/Nd-fractionated reservoirs by differentiation of Sm/Nd-unfractionated bulk planetary reservoirs. Estimates of (Nd-142/Nd-144)(sub BP) and (Nd-143/Nd-144)(sub BP) therefore provide the critical baseline relative to which these model ages are referenced. In the Sm-147-Nd-143 systematics, Nd-143/Nd-144 variations are mostly large; therefore, small variations in initial Nd-143/Nd-144 ratios generally can be ignored. However, in the case of Sm-146-Nd-142, the range of Nd-142/Nd-144 divergence for differentiated planetary reservoirs is much smaller. Consequently Sm-(146,147)-Nd-(142,143) model ages are sensitive to small variations in bulk planetary Nd-142/Nd-144 (both present-day and initial). One major unanswered question is whether or not Nd shelf standards (CIT Nd beta/Ames metal, La Jolla, NASA-JSC/Ames metal) have Nd-142/Nd-144 identical to the bulk Earth or otherwise might record some degree of radiogenic evolution in an early-fractionated reservoir. Our discussions of earth Earth differentiation based on Nd-142/Nd-144 in Isua and Acasta samples have employed a working assumption: (Nd-142/Nd-144)(sub Nd beta) = (Nd-142/Nd-144)(sub Bulk Earth). This requires experimental justification and is apparently contradicted by chondrite Nd-142/Nd-144 measurements, which have been interpreted to indicate: (Nd-142/Nd-144)(sub JSC/Ames metal) = ((Nd-142/Nd-144)(sub CHUR) = 35 plus or minus 8 ppm). At present, interpretations of the early Earth and Moon hinge largely on this issue. Because Ba in bulk chondrite samples exhibit similar magnitude nuclear anomalies, attributable to incomplete mixing of interstellar components, a critical question is whether or not nuclear effects are also present in Nd-142/Nd-144, both in bulk chondrites and between planetary objects
Constraints on the differentiation of the Earth from the coupled Sm-146,147-Nd-142,143 systematics
The coupled Sm-Nd systematics are a powerful (albeit analytically challenging) tool for investigating the geodynamic history of the Earth. We have previously reported evidence for a 33 ppm difference of an Isua sample relative to our terrestrial standard. Interpretation yields a formation age range for the depleted mantle (DM) source reservoir of 4.45-4.55 Ga. This is consistent with an epoch of LREE-enriched melt extraction from the mantle (proto-crust formation), soon after magma ocean freeze-up following the putative Moon forming giant impact
Critical manifold of the kagome-lattice Potts model
Any two-dimensional infinite regular lattice G can be produced by tiling the
plane with a finite subgraph B of G; we call B a basis of G. We introduce a
two-parameter graph polynomial P_B(q,v) that depends on B and its embedding in
G. The algebraic curve P_B(q,v) = 0 is shown to provide an approximation to the
critical manifold of the q-state Potts model, with coupling v = exp(K)-1,
defined on G. This curve predicts the phase diagram both in the ferromagnetic
(v>0) and antiferromagnetic (v<0) regions. For larger bases B the
approximations become increasingly accurate, and we conjecture that P_B(q,v) =
0 provides the exact critical manifold in the limit of infinite B. Furthermore,
for some lattices G, or for the Ising model (q=2) on any G, P_B(q,v) factorises
for any choice of B: the zero set of the recurrent factor then provides the
exact critical manifold. In this sense, the computation of P_B(q,v) can be used
to detect exact solvability of the Potts model on G.
We illustrate the method for the square lattice, where the Potts model has
been exactly solved, and the kagome lattice, where it has not. For the square
lattice we correctly reproduce the known phase diagram, including the
antiferromagnetic transition and the singularities in the Berker-Kadanoff
phase. For the kagome lattice, taking the smallest basis with six edges we
recover a well-known (but now refuted) conjecture of F.Y. Wu. Larger bases
provide successive improvements on this formula, giving a natural extension of
Wu's approach. The polynomial predictions are in excellent agreement with
numerical computations. For v>0 the accuracy of the predicted critical coupling
v_c is of the order 10^{-4} or 10^{-5} for the 6-edge basis, and improves to
10^{-6} or 10^{-7} for the largest basis studied (with 36 edges).Comment: 31 pages, 12 figure
Static displacements and chemical correlations in alloys
Recent experiments in metallic solid solutions have revealed interesting
correlations between static pair-displacements and the ordering behavior of
these alloys. This paper discusses a simple theoretical model which
successfully explains these observations and which provides a natural framework
for analyzing experimental measurements of pair-displacements and chemical
correlations in solid solutions. The utility and scope of this model is
demonstrated by analyzing results of experiments on and alloys
and results of simulations of and alloys.Comment: 12 page
- …