1,268 research outputs found

    Nucleon-Nucleon Correlations and Two-Nucleon Currents in Exclusive (e,eNNe,e'NN) Reactions

    Get PDF
    The contributions of short-range nucleon-nucleon (NN) correlations, various meson exchange current (MEC) terms and the influence of Δ\Delta isobar excitations (isobaric currents, IC) on exclusive two-nucleon knockout reactions induced by electron scattering are investigated. The nuclear structure functions are evaluated for nuclear matter. Realistic NN interactions derived in the framework of One-Boson-Exchange model are employed to evaluate the effects of correlations and MEC in a consistent way. The correlations correlations are determined by solving the Bethe-Goldstone equation. This yields significant contributions to the structure functions W_L and W_T of the (e,e'pn) and (e,e'pp) reactions. These contributions compete with MEC corrections originating from the π\pi and ρ\rho exchange terms of the same interaction. Special attention is paid to the so-called 'super parallel' kinematics at momentum transfers which can be measured e.g. at MAMI in Mainz.Comment: 14 pages, 8 figures include

    Meson exchange currents in electromagnetic one-nucleon emission

    Get PDF
    The role of meson exchange currents (MEC) in electron- and photon-induced one-nucleon emission processes is studied in a nonrelativistic model including correlations and final state interactions. The nuclear current is the sum of a one-body and of a two-body part. The two-body current includes pion seagull, pion-in-flight and the isobar current contributions. Numerical results are presented for the exclusive 16O(e,e'p)15N and 16O(\gamma,p)15N reactions. MEC effects are in general rather small in (e,e'p), while in (\gamma,p) they are always large and important to obtain a consistent description of (e,e'p) and (\gamma,p) data, with the same spectroscopic factors. The calculated (\gamma,p) cross sections are sensitive to short-range correlations at high values of the recoil momentum, where MEC effects are larger and overwhelm the contribution of correlations.Comment: 9 pages, 6 figure

    Generating GHZ state in 2m-qubit spin network

    Full text link
    We consider a pure 2m-qubit initial state to evolve under a particular quantum me- chanical spin Hamiltonian, which can be written in terms of the adjacency matrix of the Johnson network J(2m;m). Then, by using some techniques such as spectral dis- tribution and stratification associated with the graphs, employed in [1, 2], a maximally entangled GHZ state is generated between the antipodes of the network. In fact, an explicit formula is given for the suitable coupling strengths of the hamiltonian, so that a maximally entangled state can be generated between antipodes of the network. By using some known multipartite entanglement measures, the amount of the entanglement of the final evolved state is calculated, and finally two examples of four qubit and six qubit states are considered in details.Comment: 22 page

    Overlap functions in correlation methods and quasifree nucleon knockout from 16^{16}O

    Get PDF
    The cross sections of the (e,eNe,e'N) and (γ,p\gamma,p) reactions on 16^{16}O are calculated, for the transitions to the 1/21/2^{-} ground state and the first 3/23/2^{-} excited state of the residual nucleus, using single-particle overlap functions obtained on the basis of one-body density matrices within different correlation methods. The electron-induced one-nucleon knockout reaction is treated within a nonrelativistic DWIA framework. The theoretical treatment of the (γ,p\gamma,p) reaction includes both contributions of the direct knockout mechanism and of meson-exchange currents. The results are sensitive to details of the different overlap functions. The consistent analysis of the reaction cross sections and the comparison with the experimental data make it possible to study the nucleon--nucleon correlation effects.Comment: 26 pages, LaTeX, 5 Postscript figures, submitted to PR

    One Body Density Matrix, Natural Orbits and Quasi Hole States in 16O and 40Ca

    Get PDF
    The one body density matrix, momentum distribution, natural orbits and quasi hole states of 16O and 40Ca are analyzed in the framework of the correlated basis function theory using state dependent correlations with central and tensor components. Fermi hypernetted chain integral equations and single operator chain approximation are employed to sum cluster diagrams at all orders. The optimal trial wave function is determined by means of the variational principle and the realistic Argonne v8' two-nucleon and Urbana IX three-nucleon interactions. The correlated momentum distributions are in good agreement with the available variational Monte Carlo results and show the well known enhancement at large momentum values with respect to the independent particle model. Diagonalization of the density matrix provides the natural orbits and their occupation numbers. Correlations deplete the occupation number of the first natural orbitals by more than 10%. The first following ones result instead occupied by a few percent. Jastrow correlations lower the spectroscopic factors of the valence states by a few percent (~1-3%) and an additional ~8-12% depletion is provided by tensor correlations. It is confirmed that short range correlations do not explain the spectroscopic factors extracted from (e,e'p) experiments. 2h-1p perturbative corrections in the correlated basis are expected to provide most of the remaining strength, as in nuclear matter.Comment: 25 pages, 9 figures. Submitted to Phys.Rev.

    Correlation effects in single-particle overlap functions and one-nucleon removal reactions

    Get PDF
    Single-particle overlap functions and spectroscopic factors are calculated on the basis of the one-body density matrices (ODM) obtained for the nucleus 16O^{16}O employing different approaches to account for the effects of correlations. The calculations use the relationship between the overlap functions related to bound states of the (A-1)-particle system and the ODM for the ground state of the A-particle system. The resulting bound-state overlap functions are compared and tested in the description of the experimental data from (p,d) reactions for which the shape of the overlap function is important.Comment: 11 pages, 4 figures include

    A Self-Consistent Solution to the Nuclear Many-Body Problem at Finite Temperature

    Full text link
    The properties of symmetric nuclear matter are investigated within the Green's functions approach. We have implemented an iterative procedure allowing for a self-consistent evaluation of the single-particle and two-particle propagators. The in-medium scattering equation is solved for a realistic (non-separable) nucleon-nucleon interaction including both particle-particle and hole-hole propagation. The corresponding two-particle propagator is constructed explicitely from the single-particle spectral functions. Results are obtained for finite temperatures and an extrapolation to T=0 is presented.Comment: 11 pages 5 figure

    Multiple Scattering and Attenuation Phenomena in Diffraction Imaging

    Get PDF
    The problem of cross sectional (tomographic) imaging bf objects with diffracting sources is addressed. Specifically the area of investigation is the effect of multiple scattering and attenuation phenomena in diffraction imaging. The validity of either the Born or the Rytov approximations is the basic assumption behind all the inverse scattering techniques in diffraction tomography. To test these techniques When these assumptions are not satisfied, we have developed a computational procedure for the calculation of the “ true” scattered fields from a multi-component object. Using this procedure, the performance of two available diffraction reconstruction techniques is examined in the presence of multiple scattering effects. The simulation results show the superiority of the Synthetic Aperture technique. We have also studied the role of attenuation in the reconstruction techniques. To calculate the scattered fields from an object in the presence of attenuation, new computer simulation programs are developed. These codes are used in a simulation study of the effect of the attenuation parameter on the object reconstuctions. [reconstruction

    Lack of association between two ACE gene polymorphisms (rs4291 and Alu I/D) and late onset Alzheimer’s disease

    Get PDF
    Alzheimer’s disease (AD) is a prevalent disorder and the most common cause of dementia in elderly populations. Genetic and environmental factors together play a role in developing late onset Alzheimer's disease (LOAD). According to the recent published papers, ACE is one of the candidate susceptibility genes for LOAD. In this study, allele and genotype frequencies for rs4291 and rs1799752 polymorphisms of ACE gene, for 100 Iranian patients, affected with AD and 100 healthy controls were compared using Chi-square test. No statistically significant differences were found in genotype and allele frequencies of rs4291 and rs1799752 polymorphisms between our LOAD patients and controls. The pair-wise haplotype analysis of rs4291 -240 A/T and rs1799752 Alu I/D polymorphisms were also performed, but no significant associations were identified.Key words: ACE, Alzheimer’s disease, Iranian, association, polymorphism
    corecore