36 research outputs found

    Efficient Nitrogen Recovery from Agro-Energy Effluents for Cyanobacteria Cultivation (Spirulina)

    Get PDF
    The present study aimed to obtain an efficient liquid nitrogen fertilizer from the by-product of anaerobic digestion for its subsequent use in the production of cyanobacteria (Spirulina). A simple recovery technology was tested based on the stripping and acid absorption, modifying temperature (50 and 70 degrees C) and pH (10 and 12), of the ammonia nitrogen contained in the digestate produced in a large-scale plant treating livestock manure and grass silage. The results demonstrated how, at a relatively low temperature (50 degrees C), using sulfuric and citric acid solution, it is possible to recover nitrogen from a digestate in the form of ammonium sulfate and ammonium citrate with yields of 70% and 72.1% respectively. By carrying out Spirulina growth tests, promising results were obtained under semicontinuous production, with a maximum dry biomass daily productivity of 0.344 g L-1 day(-1) with ammonium sulfate and 0.246 gDW L-1 day(-1) with ammonium citrate. The results showed that nitrogen can be efficiently recovered on site by using the organic acid, digestate and waste heat from anaerobic digestion for Spirulina biomass production

    Deficiency in interferon type 1 receptor improves definitive erythropoiesis in Klf1 null mice

    Get PDF
    A key regulatory gene in definitive erythropoiesis is the transcription factor Krüppel-like factor 1 (Klf1). Klf1 null mice die in utero by day 15.5 (E15.5) due to impaired definitive erythropoiesis and severe anemia. Definitive erythropoiesis takes place in erythroblastic islands in mammals. Erythroblastic islands are formed by a central macrophage (Central Macrophage of Erythroblastic Island, CMEI) surrounded by maturating erythroblasts. Interferon-β (IFN-β) is activated in the fetal liver’s CMEI of Klf1 null mice. The inhibitory effect of IFN-β on erythropoiesis is known and, therefore, we speculated that IFN-β could have contributed to the impairment of definitive erythropoiesis in Klf1 knockout (KO) mice fetal liver. To validate this hypothesis, in this work we determined whether the inactivation of type I interferon receptor (Ifnar1) would ameliorate the phenotype of Klf1 KO mice by improving the lethal anemia. Our results show a prolonged survival of Klf1/Ifnar1 double KO embryos, with an improvement of the definitive erythropoiesis and erythroblast enucleation, together with a longer lifespan of CMEI in the fetal liver and also a restoration of the apoptotic program. Our data indicate that the cytotoxic effect of IFN-β activation in CMEI contribute to the impairment of definitive erythropoiesis associated with Klf1 deprivation

    Clinicopathologic predictors of renal outcomes in light chain cast nephropathy: a multicenter retrospective study

    Get PDF
    Light chain cast nephropathy (LCCN) in multiple myeloma often leads to severe and poorly reversible acute kidney injury. Severe renal impairment influences the allocation of chemotherapy and its tolerability; it also affects patient survival. Whether renal biopsy findings add to the clinical assessment in predicting renal and patient outcomes in LCCN is uncertain. We retrospectively reviewed clinical presentation, chemotherapy regimens, hematologic response, and renal and patient outcomes in 178 patients with biopsy-proven LCCN from 10 centers in Europe and North America. A detailed pathology review, including assessment of the extent of cast formation, was performed to study correlations with initial presentation and outcomes. Patients presented with a mean estimated glomerular filtration rate (eGFR) of 13 ± 11 mL/min/1.73 m2, and 82% had stage 3 acute kidney injury. The mean number of casts was 3.2/mm2 in the cortex. Tubulointerstitial lesions were frequent: acute tubular injury (94%), tubulitis (82%), tubular rupture (62%), giant cell reaction (60%), and cortical and medullary inflammation (95% and 75%, respectively). Medullary inflammation, giant cell reaction, and the extent of cast formation correlated with eGFR value at LCCN diagnosis. During a median follow-up of 22 months, mean eGFR increased to 43 ± 30 mL/min/1.73 m2. Age, β2-microglobulin, best hematologic response, number of cortical casts per square millimeter, and degree of interstitial fibrosis/tubular atrophy (IFTA) were independently associated with a higher eGFR during follow-up. This eGFR value correlated with overall survival, independently of the hematologic response. This study shows that extent of cast formation and IFTA in LCCN predicts the quality of renal response, which, in turn, is associated with overall survival.info:eu-repo/semantics/publishedVersio

    Overexpression of the Cytokine BAFF and Autoimmunity Risk

    Get PDF
    BACKGROUND\textbf{BACKGROUND}: Genomewide association studies of autoimmune diseases have mapped hundreds of susceptibility regions in the genome. However, only for a few association signals has the causal gene been identified, and for even fewer have the causal variant and underlying mechanism been defined. Coincident associations of DNA variants affecting both the risk of autoimmune disease and quantitative immune variables provide an informative route to explore disease mechanisms and drug-targetable pathways. METHODS\textbf{METHODS}: Using case-control samples from Sardinia, Italy, we performed a genomewide association study in multiple sclerosis followed by TNFSF13B locus-specific association testing in systemic lupus erythematosus (SLE). Extensive phenotyping of quantitative immune variables, sequence-based fine mapping, cross-population and cross-phenotype analyses, and gene-expression studies were used to identify the causal variant and elucidate its mechanism of action. Signatures of positive selection were also investigated. RESULTS\textbf{RESULTS}: A variant in TNFSF13B, encoding the cytokine and drug target B-cell activating factor (BAFF), was associated with multiple sclerosis as well as SLE. The disease-risk allele was also associated with up-regulated humoral immunity through increased levels of soluble BAFF, B lymphocytes, and immunoglobulins. The causal variant was identified: an insertion-deletion variant, GCTGT→A (in which A is the risk allele), yielded a shorter transcript that escaped microRNA inhibition and increased production of soluble BAFF, which in turn up-regulated humoral immunity. Population genetic signatures indicated that this autoimmunity variant has been evolutionarily advantageous, most likely by augmenting resistance to malaria. CONCLUSIONS\textbf{CONCLUSIONS}: A TNFSF13B variant was associated with multiple sclerosis and SLE, and its effects were clarified at the population, cellular, and molecular levels. (Funded by the Italian Foundation for Multiple Sclerosis and others.).Supported by grants (2011/R/13 and 2015/R/09, to Dr. Cucca) from the Italian Foundation for Multiple Sclerosis; contracts (N01-AG-1-2109 and HHSN271201100005C, to Dr. Cucca) from the Intramural Research Program of the National Institute on Aging, National Institutes of Health (NIH); a grant (FaReBio2011 “Farmaci e Reti Biotecnologiche di Qualità,” to Dr. Cucca) from the Italian Ministry of Economy and Finance; a grant (633964, to Dr. Cucca) from the Horizon 2020 Research and Innovation Program of the European Union; a grant (U1301.2015/AI.1157.BE Prat. 2015-1651, to Dr. Cucca) from Fondazione di Sardegna; grants (“Centro per la ricerca di nuovi farmaci per malattie rare, trascurate e della povertà” and “Progetto collezione di composti chimici ed attività di screening,” to Dr. Cucca) from Ministero dell’Istruzione, dell’Università e della Ricerca; grants (HG005581, HG005552, HG006513, and HG007022, to Dr. Abecasis) from the National Human Genome Research Institute; a grant (9-2011-253, to Dr. Todd) from JDRF; a grant (091157, to Dr. Todd) from the Wellcome Trust; a grant (to Dr. Todd) from the National Institute for Health Research (NIHR); and the NIHR Cambridge Biomedical Research Centre. Dr. Idda was a recipient of a Master and Back fellowship from the Autonomous Region of Sardinia

    Geochemistry of lead at the old mine area of Baccu Locci (South-East Sardinia, Italy)

    No full text
    About a century of exploitation of the galena-arsenopyrite deposit of Baccu Locci in Sardinia (Italy) has caused a severe, persistent arsenic contamination that extends downstream of the mine for several kilometres. Differently from As, the aqueous contamination of lead is only localised in the upper part of the mine despite very high Pb concentrations in geologic materials (waste rocks, tailings, stream sediments, soils) over the whole Baccu Locci stream catchment. The determination of aqueous and solid Pb speciation in various environmental media of the Baccu Locci system has pointed out that the peculiar geochemical behaviour of Pb is mainly due to (i) the short residence time of dissolved Pb in surface and ground water under near-neutral pH conditions and (ii) the low solubility of plumbojarosite that represents the main secondary Pb-bearing mineral in the Baccu Locci environment

    PAC-Bot: Writing Text Messages for Developing Point-and-Click Games

    No full text
    In this paper, we investigate the effects of including a conversational intelligent agent for helping end user developers in defining the behaviour of point-and-click games through event-condition action rules. We discuss the rule support in a web-based authoring environment, together with the design and the implementation of the agent in the form of a chatbot. We compared the versions with and without the chatbot and the results show a decrease in the perceived cognitive load in complex tasks

    Induction of therapeutic levels of HbF in genome-edited primary β039-thalassaemia haematopoietic stem and progenitor cells

    No full text
    Hereditary persistence of fetal haemoglobin (HPFH) is the major modifier of the clinical severity of β-thalassaemia. The homozygous mutation c.-196 C>T in the Aγ-globin (HBG1) promoter, which causes Sardinian δβ0-thalassaemia, is able to completely rescue the β-major thalassaemia phenotype caused by the β039-thalassaemia mutation, ensuring high levels of fetal haemoglobin synthesis during adulthood. Here, we describe a CRISPR/Cas9 genome-editing approach, combined with the non-homologous end joining (NHEJ) pathway repair, aimed at reproducing the effects of this naturally occurring HPFH mutation in both HBG promoters. After selecting the most efficient guide RNA in K562 cells, we edited the HBG promoters in human umbilical cord blood-derived erythroid progenitor 2 cells (HUDEP-2) and in haematopoietic stem and progenitor cells (HSPCs) from β0-thalassaemia patients to assess the therapeutic potential of HbF induction. Our results indicate that small deletions targeting the −196-promoter region restore high levels of fetal haemoglobin (HbF) synthesis in all cell types tested. In pools of HSPCs derived from homozygous β039-thalassaemia patients, a 20% editing determined a parallel 20% increase of HbF compared to unedited pools. These results suggest that editing the region of HBG promoters around the −196 position has the potential to induce therapeutic levels of HbF in patients with most types of β-thalassaemia irrespective of the β-globin gene (HBB) mutations
    corecore