11 research outputs found

    G-quadruplex organic frameworks

    Get PDF
    Two-dimensional covalent organic frameworks often π stack into crystalline solids that allow precise spatial positioning of molecular building blocks. Inspired by the hydrogen-bonded G-quadruplexes found frequently in guanine-rich DNA, here we show that this structural motif can be exploited to guide the self-assembly of naphthalene diimide and perylene diimide electron acceptors end-capped with two guanine electron donors into crystalline G-quadruplex-based organic frameworks, wherein the electron donors and acceptors form ordered, segregated π-stacked arrays. Time-resolved optical and electron paramagnetic resonance spectroscopies show that photogenerated holes and electrons in the frameworks have long lifetimes and display recombination kinetics typical of dissociated charge carriers. Moreover, the reduced acceptors form polarons in which the electron is shared over several molecules. The G-quadruplex frameworks also demonstrate potential as cathode materials in Li-ion batteries because of the favourable electron- and Li-ion-transporting capacity provided by the ordered rylene diimide arrays and G-quadruplex structures, respectively

    Transmembrane anion transport mediated by halogen-bond donors

    No full text
    In biology and chemistry, the transport of anions across lipid bilayer membranes is usually achieved by sophisticated supramolecular architectures. Significant size reduction of transporters is hampered by the intrinsically hydrophilic nature of typical anion-binding functionalities, hydrogen-bond donors or cations. To maximize the atom efficiency of anion transport, the hydrophobic nature, directionality, and strength of halogen bonds seem promising. Unlike the ubiquitous, structurally similar hydrogen bonds, halogen bonds have not been explored for anion transport. Here we report that transport across lipid bilayers can be achieved with small perfluorinated molecules that are equipped with strong halogen-bond donors. Transport is observed with trifluoroiodomethane (boiling point=−22 °C); that is, it acts as a 'single-carbon' transporter. Contrary to the destructive action of small-molecule detergents, transport with halogen bonds is leakage-free, cooperative, non-ohmic and highly selective, with anion/cation permeability ratios <37

    Discovery of a New Class of Highly Potent Inhibitors of Acid Ceramidase: Synthesis and Structure–Activity Relationship (SAR)

    No full text
    Acid ceramidase (AC) is an intracellular cysteine amidase that catalyzes the hydrolysis of the lipid messenger ceramide. By regulating ceramide levels in cells, AC may contribute to the regulation of cancer cell proliferation and senescence and to the response to cancer therapy. We recently identified the antitumoral agent carmofur (4a) as the first nanomolar inhibitor of intracellular AC activity (rat AC, IC50 = 0.029 μM). In the present work, we expanded our initial structure-activity relationship (SAR) studies around 4a by synthesizing and testing a series of 2,4-dioxopyrimidine-1-carboxamides. Our investigations provided a first elucidation of the structural features of uracil derivatives that are critical for AC inhibition and led us to identify the first single-digit nanomolar inhibitors of this enzyme. The present results confirm that substituted 2,4-dioxopyrimidine-1-carboxamides are a novel class of potent inhibitors of AC. Selected compounds of this class may represent useful probes to further characterize the functional roles of AC

    Are Chelate Rings Aromatic? Calculations of Magnetic Properties of Acetylacetonato and o

    No full text
    corecore