23 research outputs found

    Masking Kernel for Learning Energy-Efficient Representations for Speaker Recognition and Mobile Health

    Full text link
    Modern smartphones possess hardware for audio acquisition and to perform speech processing tasks such as speaker recognition and health assessment. However, energy consumption remains a concern, especially for resource-intensive DNNs. Prior work has improved the DNN energy efficiency by utilizing a compact model or reducing the dimensions of speech features. Both approaches reduced energy consumption during DNN inference but not during speech acquisition. This paper proposes using a masking kernel integrated into gradient descent during DNN training to learn the most energy-efficient speech length and sampling rate for windowing, a common step for sample construction. To determine the most energy-optimal parameters, a masking function with non-zero derivatives was combined with a low-pass filter. The proposed approach minimizes the energy consumption of both data collection and inference by 57%, and is competitive with speaker recognition and traumatic brain injury detection baselines

    Cyclin A1 promoter hypermethylation in human papillomavirus-associated cervical cancer

    Get PDF
    BACKGROUND: The aim of this study was to evaluate epigenetic status of cyclin A1 in human papillomavirus-associated cervical cancer. Y. Tokumaru et al., Cancer Res 64, 5982-7 (Sep 1, 2004)demonstrated in head and neck squamous-cell cancer an inverse correlation between cyclin A1 promoter hypermethylation and TP53 mutation. Human papillomavirus-associated cervical cancer, however, is deprived of TP53 function by a different mechanism. Therefore, it was of interest to investigate the epigenetic alterations during multistep cervical cancer development. METHODS: In this study, we performed duplex methylation-specific PCR and reverse transcriptase PCR on several cervical cancer cell lines and microdissected cervical cancers. Furthermore, the incidence of cyclin A1 methylation was studied in 43 samples of white blood cells, 25 normal cervices, and 24, 5 and 30 human papillomavirus-associated premalignant, microinvasive and invasive cervical lesions, respectively. RESULTS: We demonstrated cyclin A1 methylation to be commonly found in cervical cancer, both in vitro and in vivo, with its physiological role being to decrease gene expression. More important, this study demonstrated that not only is cyclin A1 promoter hypermethylation strikingly common in cervical cancer, but is also specific to the invasive phenotype in comparison with other histopathological stages during multistep carcinogenesis. None of the normal cells and low-grade squamous intraepithelial lesions exhibited methylation. In contrast, 36.6%, 60% and 93.3% of high-grade squamous intraepithelial lesions, microinvasive and invasive cancers, respectively, showed methylation. CONCLUSION: This methylation study indicated that cyclin A1 is a potential tumor marker for early diagnosis of invasive cervical cancer

    Hypomethylation of Intragenic LINE-1 Represses Transcription in Cancer Cells through AGO2

    Get PDF
    In human cancers, the methylation of long interspersed nuclear element -1 (LINE-1 or L1) retrotransposons is reduced. This occurs within the context of genome wide hypomethylation, and although it is common, its role is poorly understood. L1s are widely distributed both inside and outside of genes, intragenic and intergenic, respectively. Interestingly, the insertion of active full-length L1 sequences into host gene introns disrupts gene expression. Here, we evaluated if intragenic L1 hypomethylation influences their host gene expression in cancer. First, we extracted data from L1base (http://l1base.molgen.mpg.de), a database containing putatively active L1 insertions, and compared intragenic and intergenic L1 characters. We found that intragenic L1 sequences have been conserved across evolutionary time with respect to transcriptional activity and CpG dinucleotide sites for mammalian DNA methylation. Then, we compared regulated mRNA levels of cells from two different experiments available from Gene Expression Omnibus (GEO), a database repository of high throughput gene expression data, (http://www.ncbi.nlm.nih.gov/geo) by chi-square. The odds ratio of down-regulated genes between demethylated normal bronchial epithelium and lung cancer was high (p<1Eβˆ’27; ORβ€Š=β€Š3.14; 95% CIβ€Š=β€Š2.54–3.88), suggesting cancer genome wide hypomethylation down-regulating gene expression. Comprehensive analysis between L1 locations and gene expression showed that expression of genes containing L1s had a significantly higher likelihood to be repressed in cancer and hypomethylated normal cells. In contrast, many mRNAs derived from genes containing L1s are elevated in Argonaute 2 (AGO2 or EIF2C2)-depleted cells. Hypomethylated L1s increase L1 mRNA levels. Finally, we found that AGO2 targets intronic L1 pre-mRNA complexes and represses cancer genes. These findings represent one of the mechanisms of cancer genome wide hypomethylation altering gene expression. Hypomethylated intragenic L1s are a nuclear siRNA mediated cis-regulatory element that can repress genes. This epigenetic regulation of retrotransposons likely influences many aspects of genomic biology

    Associations between maternal plasma zinc concentrations in late pregnancy and LINE-1 and Alu methylation loci in the young adult offspring.

    No full text
    BackgroundIn animal models, prenatal zinc deficiency induced epigenetic changes in the fetus, but data in humans are lacking. We aimed to examine associations between maternal zinc levels during pregnancy and DNA methylation in LINE-1 and Alu repetitive sequences in young adult offspring, as well as anthropometry and cardiometabolic parameters.MethodsParticipants were 74 pregnant women from the Chiang Mai Low Birth Weight cohort, and their offspring followed up at 20 years of age. Maternal plasma zinc concentrations were measured at approximately 36 weeks of gestation. DNA methylation levels in LINE-1 and Alu repetitive sequences were measured in the offspring, as well as anthropometry and cardiometabolic parameters (lipid profile, blood pressure, and glucose metabolism).ResultsOver half of mothers (39/74; 53%) were zinc deficient (ConclusionsLower maternal zinc concentrations late in gestation were associated with changes in DNA methylation in later life. Thus, zinc deficiency during pregnancy may induce alterations in total LINE-1 methylation and LINE-1 hypermethylation loci. These results suggest a possible epigenetic link between zinc deficiency during pregnancy and long-term outcomes in the offspring
    corecore