18,719 research outputs found

    Spontaneous Flavor and Parity Breaking with Wilson Fermions

    Get PDF
    We discuss the phase diagram of Wilson fermions in the m0m_0--g2g^2 plane for two-flavor QCD. We argue that, as originally suggested by Aoki, there is a phase in which flavor and parity are spontaneously broken. Recent numerical results on the spectrum of the overlap Hamiltonian have been interpreted as evidence against Aoki's conjecture. We show that they are in fact consistent with the presence of a flavor-parity broken ``Aoki phase''. We also show how, as the continuum limit is approached, one can study the lattice theory using the continuum chiral Lagrangian supplemented by additional terms proportional to powers of the lattice spacing. We find that there are two possible phase structures at non-zero lattice spacing: (1) there is an Aoki phase of width Δm0∌a3\Delta m_0 \sim a^3 with two massless Goldstone pions; (2) there is no symmetry breaking, and all three pions have an equal non-vanishing mass of order aa. Present numerical evidence suggests that the former option is realized for Wilson fermions. Our analysis then predicts the form of the pion masses and the flavor-parity breaking condensate within the Aoki phase. Our analysis also applies for non-perturbatively improved Wilson fermions.Comment: 22 pages, LaTeX, 5 figures (added several references and a comment

    Chiral perturbation theory with Wilson-type fermions including a2a^2 effects: Nf=2N_f=2 degenerate case

    Full text link
    We have derived the quark mass dependence of mπ2m_{\pi}^2, mAWIm_{\rm AWI} and fπf_{\pi}, using the chiral perturbation theory which includes the a2a^2 effect associated with the explicit chiral symmetry breaking of the Wilson-type fermions, in the case of the Nf=2N_f=2 degenerate quarks. Distinct features of the results are (1) the additive renormalization for the mass parameter mqm_q in the Lagrangian, (2) O(a)O(a) corrections to the chiral log (mqlog⁥mqm_q\log m_q) term, (3) the existence of more singular term, log⁥mq\log m_q, generated by a2a^2 contributions, and (4) the existence of both mqlog⁥mqm_q\log m_q and log⁥mq\log m_q terms in the quark mass from the axial Ward-Takahashi identity, mAWIm_{\rm AWI}. By fitting the mass dependence of mπ2m_\pi^2 and mAWIm_{\rm AWI}, obtained by the CP-PACS collaboration for Nf=2N_f=2 full QCD simulations, we have found that the data are consistently described by the derived formulae. Resumming the most singular terms log⁥mq\log m_q, we have also derived the modified formulae, which show a better control over the next-to-leading order correction.Comment: 21 pages, 4 figures (10 eps files), Revtex4, some discussions and references added, the final version to appear in PR

    Operator product expansion and the short distance behavior of 3-flavor baryon potentials

    Get PDF
    The short distance behavior of baryon-baryon potentials defined through Nambu-Bethe-Salpeter wave functions is investigated using the operator product expansion. In a previous analysis of the nucleon-nucleon case, corresponding to the SU(3) channels 27s27_s and 10‟a\overline{10}_a, we argued that the potentials have a repulsive core. A new feature occurs for the case of baryons made up of three flavors: manifestly asymptotically attractive potentials appear in the singlet and octet channels. Attraction in the singlet channel was first indicated by quark model considerations, and recently been found in numerical lattice simulations. The latter have however not yet revealed asymptotic attraction in the octet channels; we give a speculative explanation for this apparent discrepancy.Comment: 11 pages, 2 figure

    Pion scattering in Wilson ChPT

    Get PDF
    We compute the scattering amplitude for pion scattering in Wilson chiral perturbation theory for two degenerate quark flavors. We consider two different regimes where the quark mass m is of order (i) a\Lambda_QCD^2 and (ii) a^2\Lambda_QCD^3. Analytic expressions for the scattering lengths in all three isospin channels are given. As a result of the O(a^2) terms the I=0 and I=2 scattering lengths do not vanish in the chiral limit. Moreover, additional chiral logarithms proportional to a^2\ln M_{\pi}^2 are present in the one-loop results for regime (ii). These contributions significantly modify the familiar results from continuum chiral perturbation theory.Comment: 20 pages, 4 figures. V3: Comments on finite size effects and the axial vector current added, one more reference. To be published in PR

    I=2 Pion scattering length with improved actions on anisotropic lattices

    Full text link
    ππ\pi\pi scattering length in the I=2 channel is calculated within quenched approximation using improved gauge and improved Wilson fermion actions on anisotropic lattices. The results are extrapolated towards the chiral, infinite volume and continuum limit. This result improves our previous result on the scattering length. In the chiral, infinite volume and continuum limit, we obtain a0(2)mπ=−0.0467(45)a^{(2)}_0m_\pi=-0.0467(45), which is consistent with the result from Chiral Perturbation Theory, the experiment and results from other lattice calculations.Comment: 7 pages, 2 figures, typeset wit elsart.cl

    A small tabletop experiment for a direct measurement of the speed of light

    Full text link
    A small tabletop experiment for a direct measurement of the speed of light to an accuracy of few percent is described. The experiment is accessible to a wide spectrum of undergraduate students, in particular to students not majoring in science or engineering. The experiment may further include a measurement of the index of refraction of a sample. Details of the setup and equipment are given. Results and limitations of the experiment are analyzed, partly based on our experience in employing the experiment in our student laboratories. Safety considerations are also discussed.Comment: 4pages, 5fig

    New Dissipation Relaxation Phenomenon in Oscillating Solid He-4

    Full text link
    We describe the first observations on the time-dependent dissipation when the drive level of a torsional oscillator containing solid He-4 is abruptly changed. The relaxation of dissipation in solid He-4 shows rich dynamical behavior including exponential and logarithmic time-dependent decays, hysteresis, and memory effects.Comment: 4 pages, 4 figure

    Oscillation Frequency Dependence of Non-Classical Rotation Inertia of Solid 4^4He

    Full text link
    The non-classical rotational inertia fraction of the identical cylindrical solid 4^4He below 300 mK is studied at 496 and 1173 Hz by a double resonance torsional oscillator. Below 35 mK, the fraction is the same at sufficiently low rim velocities. Above 35 mK, the fraction is greater for the higher than the lower mode. The dissipation peak of the lower mode occurs at a temperature ∌\sim 4 mK lower than that of the higher mode. The drive dependence of the two modes shows that the reduction of the fraction is characterized by critical velocity, \textit{not} amplitude nor acceleration.Comment: 4 pages, 4 figure

    Extreme Enhancements of r-process Elements in the Cool Metal-Poor Main-Sequence Star SDSS J2357-0052

    Full text link
    We report the discovery of a cool metal-poor, main-sequence star exhibiting large excesses of r-process elements. This star is one of two newly discovered cool subdwarfs (effective temperatures of 5000 K) with extremely low metallicity ([Fe/H]<-3) identified from follow-up high-resolution spectroscopy of metal-poor candidates from the Sloan Digital Sky Survey. SDSS J2357-0052 has [Fe/H]=-3.4 and [Eu/Fe]=+1.9, and exhibits a scaled solar r-process abundance pattern of heavy neutron-capture elements. This is the first example of an extremely metal-poor, main-sequence star showing large excesses of r-process elements; all previous examples of the large r-process-enhancement phenomena have been associated with metal-poor giants. The metallicity of this object is the lowest, and the excess of Eu ([Eu/Fe]) is the highest, among the r-process-enhanced stars found so far. We consider possible scenarios to account for the detection of such a star, and discuss techniques to enable searches for similar stars in the future.Comment: 16 pages, 3 figures, 2 tables, ApJL in pres

    The Weakly Coupled Gross-Neveu Model with Wilson Fermions

    Get PDF
    The nature of the phase transition in the lattice Gross-Neveu model with Wilson fermions is investigated using a new analytical technique. This involves a new type of weak coupling expansion which focuses on the partition function zeroes of the model. Its application to the single flavour Gross-Neveu model yields a phase diagram whose structure is consistent with that predicted from a saddle point approach. The existence of an Aoki phase is confirmed and its width in the weakly coupled region is determined. Parity, rather than chiral symmetry breaking naturally emerges as the driving mechanism for the phase transition.Comment: 15 pages including 1 figur
    • 

    corecore