985 research outputs found

    The clash of symmetries in a Randall-Sundrum-like spacetime

    Get PDF
    We present a toy model that exhibits clash-of-symmetries style Higgs field kink configurations in a Randall-Sundrum-like spacetime. The model has two complex scalar fields Phi_{1,2}, with a sextic potential obeying global U(1)xU(1) and discrete Phi_1 Phi_2 interchange symmetries. The scalar fields are coupled to 4+1 dimensional gravity endowed with a bulk cosmological constant. We show that the coupled Einstein-Higgs field equations have an interesting analytic solution provided the sextic potential adopts a particular form. The 4+1 metric is shown to be that of a smoothed-out Randall-Sundrum type of spacetime. The thin-brane Randall-Sundrum limit, whereby the Higgs field kinks become step functions, is carefully defined in terms of the fundamental parameters in the action. The ``clash of symmetries'' feature, defined in previous papers, is manifested here through the fact that both of the U(1) symmetries are spontaneously broken at all non-asymptotic points in the extra dimension ww. One of the U(1)'s is asymptotically restored as w --> -infinity, with the other U(1) restored as w --> +infinity. The spontaneously broken discrete symmetry ensures topological stability. In the gauged version of this model we find new flat-space solutions, but in the warped metric case we have been unable to find any solutions with nonzero gauge fields.Comment: 15 pages, 5 figures; minor changes including added references and an updated figure; to appear in Phys Rev

    High Quality Ultrathin Bi2Se3 Films on CaF2 and CaF2/Si by Molecular Beam Epitaxy with a Radio Frequency Cracker Cell

    Full text link
    Here we report a method to fabricate high quality Bi2Se3 thin films using molecular beam epitaxy with a radio frequency cracker cell as an atomic selenium source. With rates close to exact stoichiometry, optimal layer-by-layer growth of high quality Bi2Se3 thin films with smooth surfaces, has been achieved on CaF2(111) substrates and Si(111) substrates with a thin CaF2 buffer layer(CaF2/Si). Transport measurements show a characteristic weak antilocalization mangnetoresistance, with emergence of weak localization in the ultrathin film limit. Quantum Oscillations attributed to the topological surface states have been observed, including in films on CaF2/Si

    Excitation of the Ganymede Ultraviolet Aurora

    Get PDF
    We analyze the ultraviolet aurorae observed on Ganymede by means of the Hubble Space Telescope and compare them to similar phenomena on Earth. We find that the tenuous nature of Ganymede's atmosphere precludes excitation of the aurora by high-energy electrons and requires a local acceleration mechanism. We propose the following as plausible mechanisms for generating both the continuous background emission and the intense auroral bright spots

    Testing a comprehensive model of organizational justice perceptions and personal states with personal and organizational outcomes

    Get PDF
    Managers need to understand the types of perceptions, feelings, and reactions they should elicit from personnel under their direction. To this end, a parsimonious model is required. However, few comprehensive models linking managerial behaviours to employee states and outcomes have been developed and tested. Accordingly, this research articulates the importance of three critical constructs - leader–member exchange (LMX), job satisfaction, and perceived organizational justice – and associations with emotional exhaustion, work motivation, workplace misbehavior, and emotional intelligence as a concise and efficient model that explains the relationships between attitudes and states within individuals, and related, important work and personal outcomes. The model displayed a very high level of reliability and validity based on the exceptional fit of the structural equation models across two very large samples (over 1600 participants in each study)

    Quantum advantages in classically defined tasks

    Full text link
    We analyze classically defined games for which a quantum team has an advantage over any classical team. The quantum team has a clear advantage in games in which the players of each team are separated in space and the quantum team can use unusually strong correlations of the Einstein-Podolsky-Rosen (EPR) type. We present an example of a classically defined game played at one location for which quantum players have a real advantage.Comment: 4 pages, revised version, to be published in PR

    Quantum discord and local demons

    Full text link
    Quantum discord was proposed as a measure of the "quantumness" of correlations. There are at least three different discord-like quantities, two of which determine the difference between the efficiencies of a Szilard's engine under different sets of restrictions. The three discord measures vanish simulataneosly. We introduce an easy way to test for zero discord, relate it to the Cerf-Adami conditional entropy and show that there is no relation between the discord and the local disitnguishability.Comment: 7 pages, RevTeX. Some minor changes after comments from colleagues, some references added. Similar to published versio

    Experimental Demonstration of Quantum Fully Homomorphic Encryption with Application in a Two-Party Secure Protocol

    Get PDF
    A fully homomorphic encryption system hides data from unauthorized parties while still allowing them to perform computations on the encrypted data. Aside from the straightforward benefit of allowing users to delegate computations to a more powerful server without revealing their inputs, a fully homomorphic cryptosystem can be used as a building block in the construction of a number of cryptographic functionalities. Designing such a scheme remained an open problem until 2009, decades after the idea was first conceived, and the past few years have seen the generalization of this functionality to the world of quantum machines. Quantum schemes prior to the one implemented here were able to replicate some features in particular use cases often associated with homomorphic encryption but lacked other crucial properties, for example, relying on continual interaction to perform a computation or leaking information about the encrypted data. We present the first experimental realization of a quantum fully homomorphic encryption scheme. To demonstrate the versatility of a a quantum fully homomorphic encryption scheme, we further present a toy two-party secure computation task enabled by our scheme

    Nonlinear Induction Detection of Electron Spin Resonance

    Full text link
    We present a new approach to the induction detection of electron spin resonance (ESR) signals exploiting the nonlinear properties of a superconducting resonator. Our experiments employ a yttrium barium copper oxide (YBCO) superconducting stripline microwave (MW) resonator integrated with a microbridge. A strong nonlinear response of the resonator is thermally activated in the microbridge when exceeding a threshold in the injected MW power. The responsivity factor characterizing the ESR-induced change in the system's output signal is about 100 times larger when operating the resonator near the instability threshold, compared to the value obtained in the linear regime of operation. Preliminary experimental results, together with a theoretical model of this phenomenon are presented. Under appropriate conditions nonlinear induction detection of ESR can potentially improve upon the current capabilities of conventional linear induction detection ESR

    Experimental Demonstration of Quantum Fully Homomorphic Encryption with Application in a Two-Party Secure Protocol

    Get PDF
    A fully homomorphic encryption system hides data from unauthorized parties, while still allowing them to perform computations on the encrypted data. Aside from the straightforward benefit of allowing users to delegate computations to a more powerful server without revealing their inputs, a fully homomorphic cryptosystem can be used as a building block in the construction of a number of cryptographic functionalities. Designing such a scheme remained an open problem until 2009, decades after the idea was first conceived, and the past few years have seen the generalization of this functionality to the world of quantum machines. Quantum schemes prior to the one implemented here were able to replicate some features in particular use-cases often associated with homomorphic encryption but lacked other crucial properties, for example, relying on continual interaction to perform a computation or leaking information about the encrypted data. We present the first experimental realisation of a quantum fully homomorphic encryption scheme. We further present a toy two-party secure computation task enabled by our scheme. Finally, as part of our implementation, we also demonstrate a post-selective two-qubit linear optical controlled-phase gate with a much higher post-selection success probability (1/2) when compared to alternate implementations, e.g. with post-selective controlled-ZZ or controlled-XX gates (1/9).Comment: 11 pages, 16 figures, 2 table
    corecore